Solveeit Logo

Question

Question: The set of critical points of the function f(x) = x – lnx + \(\int_{2}^{x}{\left( \frac{1}{t} - 2 -...

The set of critical points of the function

f(x) = x – lnx + 2x(1t22cos4t)dt\int_{2}^{x}{\left( \frac{1}{t} - 2 - 2\cos{}4t \right)dt}, n Ī N

A

{nπ2}\left\{ \frac{n\pi}{2} \right\}

B

{nπ2±π6}\left\{ \frac{n\pi}{2} \pm \frac{\pi}{6} \right\}

C

{π6,nπ2±π6}\left\{ \frac{\pi}{6},\frac{n\pi}{2} \pm \frac{\pi}{6} \right\}

D

None

Answer

{π6,nπ2±π6}\left\{ \frac{\pi}{6},\frac{n\pi}{2} \pm \frac{\pi}{6} \right\}

Explanation

Solution

f ¢(x) = 1 – 1x\frac{1}{x} + (1x22cos4x)\left( \frac{1}{x} - 2 - 2\cos 4x \right)

= –1 –2 cos 4x = 0 Ž cos 4x = –1/2

Ž x =nπ2\frac{n\pi}{2}+ π6\frac{\pi}{6}, n Ī I

but for log x, x > 0

for n = 0, x = ± p/6 (but x= –p/6 is not possible)

critical point = [π6,nπ2±π6,nN]\left\lbrack \frac{\pi}{6},\frac{n\pi}{2} \pm \frac{\pi}{6},n \in N \right\rbrack