Solveeit Logo

Question

Question: The set of all values of the parameters a for which the points of minimum of the function y = 1 + a<...

The set of all values of the parameters a for which the points of minimum of the function y = 1 + a2x – x3 satisfy the inequality x2+x+2x2+5x+6\frac { x ^ { 2 } + x + 2 } { x ^ { 2 } + 5 x + 6 }£ 0 is –

A

An empty set

B

(33,23)( - 3 \sqrt { 3 } , - 2 \sqrt { 3 } )

C

(23,33)( 2 \sqrt { 3 } , 3 \sqrt { 3 } )

D

) (33,23)( - 3 \sqrt { 3 } , - 2 \sqrt { 3 } )Č (23,33)( 2 \sqrt { 3 } , 3 \sqrt { 3 } )

Answer

(23,33)( 2 \sqrt { 3 } , 3 \sqrt { 3 } )

Explanation

Solution

dydx\frac { d y } { d x } = a2 – 3x2 = 0 Ū x = ± a/ 3\sqrt { 3 } .

Since = –6x so y is minimum for x = –a/3\sqrt { 3 }.

Since x2 + x + 2 > 0 for all x so for x2+x+2x2+5x+6\frac { x ^ { 2 } + x + 2 } { x ^ { 2 } + 5 x + 6 } £ 0,

we must have x2 + 5x + 6 < 0.

If x = –a/3\sqrt { 3 }, we have a2/3 – 5a/3\sqrt { 3 } + 6 < 0 i.e. a2 – 53\sqrt { 3 } a + 18 < 0

Ū (a – 23\sqrt { 3 }) (a – 33\sqrt { 3 }) < 0 i.e. a Ī (23\sqrt { 3 }, 33\sqrt { 3 }).