Solveeit Logo

Question

Question: The set of all values of a for which the function \(f(x) = \left( \frac{\sqrt{a + 4}}{1 - a} - 1 \r...

The set of all values of a for which the function

f(x)=(a+41a1)x53x+log5f(x) = \left( \frac{\sqrt{a + 4}}{1 - a} - 1 \right)x^{5} - 3x + \log 5 decreases for all real x is

A

(3,5272)(2,)\left( - 3,\frac{5 - \sqrt{27}}{2} \right) \cup (2,\infty)

B

[4,3212](1,)\left\lbrack - 4,\frac{3 - \sqrt{21}}{2} \right\rbrack \cup (1,\infty)

C

(,)( - \infty,\infty)

D

[1,)\lbrack 1,\infty)

Answer

[4,3212](1,)\left\lbrack - 4,\frac{3 - \sqrt{21}}{2} \right\rbrack \cup (1,\infty)

Explanation

Solution

Differentiating, we get f(x)=(a+41a1)5x43f'(x) = \left( \frac{\sqrt{a + 4}}{1 - a} - 1 \right)5x^{4} - 3

For f(x)f(x) to be decreasing for all xx, we must have

f(x)f'(x) < 0 for all x.x.

(a+41a1)\left( \frac { \sqrt { a + 4 } } { 1 - a } - 1 \right) x4<35xx^{4} < \frac{3}{5}\forall x

This is possible only if a+41a10\frac{\sqrt{a + 4}}{1 - a} - 1 \leq 0

This inequality is always true if a>1,a > 1, i.e., a(1,)a \in (1,\infty). Moreover, we must have a4a \geq - 4 for a+4\sqrt{a + 4} to be real. Therefore, we have

a+41a1\frac{\sqrt{a + 4}}{1 - a} \leq 1a+41a\sqrt{a + 4} \leq 1 - a

[\becausewe consider only a < 1 ]

a+41+a22aa + 4 \leq 1 + a^{2} - 2aa23a3a^{2} - 3a - 3

a3212a \leq \frac{3 - \sqrt{21}}{2}

Thus, a[4,3212](1,)a \in \left\lbrack - 4,\frac{3 - \sqrt{21}}{2} \right\rbrack \cup (1,\infty)