Solveeit Logo

Question

Question: The set of all real numbers x for which x<sup>2</sup> - \|x + 2\| + x \> 0, is...

The set of all real numbers x for which x2 - |x + 2| + x > 0, is

A

(- ∞, - 2) ∪ (2, ∞)

B

(-∞, - 2\sqrt { 2 } ) ∪ ( 2\sqrt { 2 } , ∞)

C

(- ∞, - 1) ∪ (1, ∞)

D

(2\sqrt { 2 }, ∞)

Answer

(-∞, - 2\sqrt { 2 } ) ∪ ( 2\sqrt { 2 } , ∞)

Explanation

Solution

For x < - 2, |x + 2| = - (x + 2) and the inequality becomes

x2 + x + 2 + x > 0 ⇒ (x + 1)2 + 1 > 0

which is valid \forall x ∈ R but x < - 2

∴ x ∈ (- ∞, - 2) (i)

For x ≥ - 2 |x + 2| = x + 2

and the inequality becomes

x2 – x – 2 + x > 0 ⇒ x2 > 2

⇒ x > 2\sqrt { 2 } or x < - 2\sqrt { 2 }

i.e, x ∈ (- ∞, - 2\sqrt { 2 } ) ∪ (2\sqrt { 2 }, ∞)

but x ≥ - 2 ⇒ x ∈ [- 2, - 2\sqrt { 2 } ) ∪ ( 2\sqrt { 2 } , ∞] (ii)

From (1) and (2) x ∈ ( - ∞, - 2) ∪ [- 2, - 2\sqrt { 2 } ) ∪

(2\sqrt { 2 }, ∞)

⇒ x ∈ ( - ∞, -2\sqrt { 2 }) ∪ (2\sqrt { 2 }, ∞)