Solveeit Logo

Question

Question: The set of all real numbers x for which \(x^{2} - |x + 2| + x > 0\), is...

The set of all real numbers x for which x2x+2+x>0x^{2} - |x + 2| + x > 0, is

A

(,2)(2,)( - \infty, - 2) \cup (2,\infty)

B

(,2)(2,)( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty)

C

(,1)(1,)( - \infty, - 1) \cup (1,\infty)

D

(2,)(\sqrt{2},\infty)

Answer

(,2)(2,)( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty)

Explanation

Solution

Sol. Case I: If x+20x + 2 \geq 0 i.e. x2x \geq - 2, we get

x2x2+x>0x^{2} - x - 2 + x > 0x22>0x^{2} - 2 > 0(x2)(x+2)>0(x - \sqrt{2})(x + \sqrt{2}) > 0

x(,2)(2,)x \in ( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty)

But x2x \geq - 2

x[2,2)(2)x \in \lbrack - 2, - \sqrt{2}) \cup (\sqrt{2}\infty) …..(i)

Case II: x+2<0x + 2 < 0 i.e. x<2x < - 2, then

x2+x+2+x>0x^{2} + x + 2 + x > 0x2+2x+2>0x^{2} + 2x + 2 > 0(x+1)2+1>0(x + 1)^{2} + 1 > 0.

Which is true for all x

x(,2)x \in ( - \infty, - 2) …..(ii)

From (i) and (ii), we get, x(,2)(2,)x \in ( - \infty, - \sqrt{2}) \cup (\sqrt{2},\infty)