Question
Question: The set of all real numbers x for which \(x^{2} - |x + 2| + x > 0\), is...
The set of all real numbers x for which x2−∣x+2∣+x>0, is
A
(−∞,−2)∪(2,∞)
B
(−∞,−2)∪(2,∞)
C
(−∞,−1)∪(1,∞)
D
(2,∞)
Answer
(−∞,−2)∪(2,∞)
Explanation
Solution
Sol. Case I: If x+2≥0 i.e. x≥−2, we get
x2−x−2+x>0 ⇒ x2−2>0 ⇒ (x−2)(x+2)>0

⇒ x∈(−∞,−2)∪(2,∞)
But x≥−2
∴ x∈[−2,−2)∪(2∞) …..(i)
Case II: x+2<0 i.e. x<−2, then
x2+x+2+x>0 ⇒ x2+2x+2>0 ⇒ (x+1)2+1>0.
Which is true for all x
∴ x∈(−∞,−2) …..(ii)
From (i) and (ii), we get, x∈(−∞,−2)∪(2,∞)