Solveeit Logo

Question

Mathematics Question on Operations on Sets

The set of all real numbers x for which x2x+2+x>0x^2-|x+2|+x>0 is

A

(8,2)(2,8)(-8,-2)\cup(2,8)

B

(8,2)(2,8)(-8,-\sqrt2)\cup(\sqrt2,8)

C

(8,1)(1,8)(-8,-1)\cup(1,8)

D

(2,8)(\sqrt2,8)

Answer

(8,2)(2,8)(-8,-\sqrt2)\cup(\sqrt2,8)

Explanation

Solution

Given, x2x+2+x>0...(i)x^2-|x+2|+x>0\, \, \, \, \, \, \, \, \, \, \, ...(i)
Case I When \hspace20mmx+2\ge0
\therefore\hspace20mmx^2-x-2+x>0 \Rightarrow x^2-2>0
\Rightarrow\hspace25mmx\sqrt2
\Rightarrow\hspace25mmx\in(-2,-\sqrt2)\cup(\sqrt2,8)\, \, \, \, ...(ii)
Case II When x+2<0x+2<0
x2+x+2+x>0\therefore\, \, \, \, \, \, \, x^2+x+2+x>0
x2+2x+2>0\Rightarrow\, \, \, \, \, \, \, \, \, x^2+2x+2>0
(x+1)2+1>0\Rightarrow\, \, \, \, \, \, \, \, \, (x+1)^2+1>0
which is true for all x.
x2orx(8,2)...(iii)\therefore\, \, \, \, \, \, \, x\le-2 \, \, or\, x\in(-8,-2) \, \, \, \, \, \, \, \, \, ...(iii)
From Eqs. (ii) and (iii), we get
\hspace25mmx\in(-8,-\sqrt2)\cup(\sqrt2,8)