Solveeit Logo

Question

Question: The set of all points where the function f(x) = \(\sqrt{1 - e^{- x^{2}}}\)is differentiable is...

The set of all points where the function f(x) = 1ex2\sqrt{1 - e^{- x^{2}}}is

differentiable is

A

(0 , ¥)

B

( –¥, ¥)

C

(–¥, ¥) ~ {0}

D

(–1, ¥)

Answer

(–¥, ¥) ~ {0}

Explanation

Solution

For x ¹ 0, we have

f¢(x) = 12\frac { 1 } { 2 } 11ex2\frac{1}{\sqrt{1 - e^{- x^{2}}}} [–(–2x) ex2e^{- x^{2}}]

= xex21ex2\frac{xe^{- x^{2}}}{\sqrt{1 - e^{- x^{2}}}}

Also, f¢(0+) = f(h)f(0)h\frac{f(h) - f(0)}{h}

= 1eh2h\frac{\sqrt{1 - e^{- h^{2}}}}{h}

= (eh21h2)1/2\left( \frac{e^{- h^{2}} - 1}{- h^{2}} \right)^{1/2}= 1

and f¢(0) =limh0\lim_{h \rightarrow 0^{–}}(eh21h2)1/2\left( \frac{e^{- h^{2}} - 1}{- h^{2}} \right)^{1/2}= –1

because, as h ® 0 , h is a negative number, so that

1eh2h\frac{\sqrt{1 - e^{- h^{2}}}}{h}= – 1eh2h\frac{\sqrt{1 - e^{- h^{2}}}}{|h|}= – 1eh2h2\sqrt{\frac{1 - e^{- h^{2}}}{h^{2}}}

= – (eh21h2)1/2\left( \frac{e^{- h^{2}} - 1}{- h^{2}} \right)^{1/2}

Hence f is not differentiable at x = 0 .

Thus the points of differentiability are (–¥, ¥) ~ {0}