Solveeit Logo

Question

Question: The set of all points where the function \(f\left( x \right) = \sqrt {{x^2}|x|} \)is differentiable ...

The set of all points where the function f(x)=x2xf\left( x \right) = \sqrt {{x^2}|x|} is differentiable is
A.[0,)[0,\infty )
B.(0,)\left( {0,\infty } \right)
C.(,)\left( { - \infty ,\infty } \right)
D.(,0)(0,)\left( { - \infty ,0} \right) \cup \left( {0,\infty } \right)

Explanation

Solution

For the given function find the domain of the function, for the values of domain plot a graph, provided that to find the set of all points where the function f(x)=x2xf\left( x \right) = \sqrt {{x^2}|x|} is differentiable, and finds the set of points with the help of the graph.

Complete step-by-step answer:
For the given function f(x)=x2xf\left( x \right) = \sqrt {{x^2}|x|} , let's find the domain of the function.
For x=x|x| = x,wherex0x \geqslant 0 the function will be
f(x)=x2x f(x)=x3 f(x)=x.......(1)  \Rightarrow f\left( x \right) = \sqrt {{x^2}|x|} \\\ \Rightarrow f\left( x \right) = \sqrt {{x^3}} \\\ \Rightarrow f\left( x \right) = x.......\left( 1 \right) \\\
So, the values of the function lie between (0,)\left( {0,\infty } \right).
For x=x|x| = - x,wherex<0x < 0 the function will be
f(x)=x2x f(x)=x2(x) f(x)=x3 f(x)=x........(2)  f\left( x \right) = \sqrt {{x^2}|x|} \\\ \Rightarrow f\left( x \right) = \sqrt {{x^2}\left( { - x} \right)} \\\ \Rightarrow f\left( x \right) = \sqrt { - {x^3}} \\\ \Rightarrow f\left( x \right) = - x........\left( 2 \right) \\\
So, the values of the function lie between (,0)\left( { - \infty ,0} \right).
So, the domain of the function is (,0)(0,)\left( { - \infty ,0} \right) \cup \left( {0,\infty } \right).
Plot a graph with the help of (1) and (2), i.e. y=xandy=xy = - x\,and\,y = x

So, from the graph it is clearly indicating that the set of all points where the function f(x)=x2xf\left( x \right) = \sqrt {{x^2}|x|} is differentiable (,0)(0,)\left( { - \infty ,0} \right) \cup \left( {0,\infty } \right).
So, option D is correct.

Note: Point to remember: When a function lies between x and y, then x and y are not included in the domain values.