Solveeit Logo

Question

Mathematics Question on Sets

The set of all αϵR\alpha \epsilon R, for which w=1+(18α)z1zw = \frac{1 + (1 - 8 \alpha)z}{1 - z} is a purely imaginary number, for all z1z \neq 1, is :

A

an empty set

B

0\\{ 0 \\}

C

\left\\{0 , \frac{1}{4} , - \frac{1}{4} \right\\}

D

equal to R

Answer

0\\{ 0 \\}

Explanation

Solution

As ω \omega is purely imaginary ω+ωˉ=0\omega+\bar{\omega}=0 1+(18α)z1z+1+(18a)zˉ1z=0\frac{1+(1-8 \alpha) z}{1-z}+\frac{1+(1-8 a) \bar{z}}{1-z}=0 1zˉ+(18a)(z1)+az+(18α)(zˉ1)(1z)(1zˉ)=0\frac{1-\bar{z}+(1-8 a)(z-1)+a-z+(1-8 \alpha)(\bar{z}-1)}{(1-z)(1-\bar{z})}=0 1zˉ+z18az+8a+1z+zˉ18zˉ18zˉα+8α=01-\bar{z}+z-1-8 a z+8 a+1-z+\bar{z}-1-8 \bar{z}-1-8 \bar{z} \alpha+8 \alpha=0 8a(z+zˉ)+16α=0-8 a(z+\bar{z})+16 \alpha=0 8a[2(2+2)]=08 a[2-(2+2)]=0 if Re(z)1Re(z) \neq 1