Solveeit Logo

Question

Mathematics Question on Vector Algebra

The set of all α, for which the vectors a=αti^+6j^3k^\vec{a} = \alpha \hat{ti} + 6\hat{j} - 3\hat{k} and b=ti^2j^2αtk^\vec{b} = \hat{ti} - 2\hat{j} - 2\alpha t\hat{k} are inclined at an obtuse angle for all tRt \in \mathbb{R} is:

A

[0,1)

B

(-2,0]

C

[43,0]\left[-\frac{4}{3}, 0\right]

D

[43,1]\left[-\frac{4}{3}, 1\right]

Answer

[43,0]\left[-\frac{4}{3}, 0\right]

Explanation

Solution

The dot product of a\vec{a} and b\vec{b} is:
ab=αt+6(2)+(3)(2αt)=αt12+6αt.\vec{a} \cdot \vec{b} = \alpha t + 6(-2) + (-3)(-2\alpha t) = \alpha t - 12 + 6\alpha t.
ab=(α+6α)t12=7αt12.\vec{a} \cdot \vec{b} = (\alpha + 6\alpha)t - 12 = 7\alpha t - 12.
For the angle to be obtuse:
\vec{a} \cdot \vec{b} < 0\.
This gives:
7\alpha t - 12 < 0 \implies t(7\alpha) - 12 < 0\.
For all tRt \in \mathbb{R}, this inequality holds only if:
\alpha < 0 \quad \text{and} \quad -12 < 0\.
To ensure obtuse angles:
-\frac{4}{3} < \alpha < 0\.
Final Answer: (43,0)(- \frac{4}{3}, 0).