Solveeit Logo

Question

Question: The set $(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C'$ is equal to...

The set (ABC)(ABC)C(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C' is equal to

A

A \cap B

B

A \cap C'

C

B \cap C'

D

B' \cap C'

Answer

B \cap C'

Explanation

Solution

  1. Apply De Morgan's Law to (ABC)(A \cap B' \cap C')': (ABC)=ABC(A \cap B' \cap C')' = A' \cup B \cup C.

  2. Substitute this back into the original expression: (ABC)(ABC)C(A \cup B \cup C) \cap (A' \cup B \cup C) \cap C'.

  3. Simplify (ABC)(ABC)(A \cup B \cup C) \cap (A' \cup B \cup C) using the identity (PQ)(PQ)=Q(P \cup Q) \cap (P' \cup Q) = Q, where P=AP=A and Q=BCQ=B \cup C. This yields BCB \cup C. The expression becomes (BC)C(B \cup C) \cap C'.

  4. Apply the distributive law: (BC)C=(BC)(CC)(B \cup C) \cap C' = (B \cap C') \cup (C \cap C').

  5. Since CC=C \cap C' = \emptyset, the expression simplifies to BCB \cap C'.