Question
Question: The set $(A \cup B \cup C) \cap (A \cap B' \cap C')' \cap C'$ is equal to...
The set (A∪B∪C)∩(A∩B′∩C′)′∩C′ is equal to

A
A ∩ B
B
A ∩ C'
C
B ∩ C'
D
B' ∩ C'
Answer
B ∩ C'
Explanation
Solution
-
Apply De Morgan's Law to (A∩B′∩C′)′: (A∩B′∩C′)′=A′∪B∪C.
-
Substitute this back into the original expression: (A∪B∪C)∩(A′∪B∪C)∩C′.
-
Simplify (A∪B∪C)∩(A′∪B∪C) using the identity (P∪Q)∩(P′∪Q)=Q, where P=A and Q=B∪C. This yields B∪C. The expression becomes (B∪C)∩C′.
-
Apply the distributive law: (B∪C)∩C′=(B∩C′)∪(C∩C′).
-
Since C∩C′=∅, the expression simplifies to B∩C′.
