Solveeit Logo

Question

Mathematics Question on sequences

The sequence loga\log \,a, loga2b,loga3b2,...........\log \frac{a^{2}}{b}, \,\log \frac{a^{3}}{b^{2}}, ........... is

A

a G.P.

B

an A.P.

C

a H.P.

D

both a G.P. and a H.P

Answer

an A.P.

Explanation

Solution

Let S=loga,loga2b,loga3b2,S=\log a, \log \frac{a^{2}}{b}, \log \frac{a^{3}}{b^{2}}, \ldots =loga,(2logalogb)(3loga2logb)=\log a,(2 \log a-\log b) (3 \log a-2 \log b), Now, T2T1=logalogbT_{2}-T_{1}=\log a-\log b and T3T2=logalogbT_{3}-T_{2}=\log a-\log b Hence, it is an AP.