Solveeit Logo

Question

Question: The self ionisation constant of pure formic acid is 10−6M2 at room temperature. The density of formi...

The self ionisation constant of pure formic acid is 10−6M2 at room temperature. The density of formic acid is 1.22 g/cc. The percentage dissociation of formic acid x×10−y% then x+y is (where x,y are smaller whole numbers)

Answer

7

Explanation

Solution

Solution Explanation:

  1. Calculate the concentration of pure formic acid:
    Density = 1.22 g/cc = 1220 g/L
    Molar mass of HCOOH ≈ 46 g/mol

    c=12204626.52Mc = \frac{1220}{46} \approx 26.52 \, \text{M}
  2. Apply the self-ionisation equilibrium:
    For the dissociation, let α be the fraction of molecules ionised. Then:

    [H+]=[HCOO]=cαandK=(cα)2[H^+] = [HCOO^-] = c\alpha \quad \text{and} \quad K = (c\alpha)^2

    Given K=106K = 10^{-6} M²,

    c2α2=106α2=106(26.52)2106703.51.42×109c^2 \alpha^2 = 10^{-6} \quad \Rightarrow \quad \alpha^2 = \frac{10^{-6}}{(26.52)^2} \approx \frac{10^{-6}}{703.5} \approx 1.42 \times 10^{-9} α1.42×1093.77×105\alpha \approx \sqrt{1.42 \times 10^{-9}} \approx 3.77 \times 10^{-5}
  3. Calculate percentage dissociation:

    Percentage dissociation=α×100%3.77×103%\text{Percentage dissociation} = \alpha \times 100\% \approx 3.77 \times 10^{-3}\%

    Approximated in the format x×10y%x \times 10^{-y}\%, we have 4×103%4 \times 10^{-3}\% (taking x=4x=4 and y=3y=3).

  4. Find x+yx+y:

    x+y=4+3=7x+y = 4+3 = 7