Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The second, third and fourth terms in the binomial expansion (x+a)n(x+a)^n are 240240, 720720 and 10801080, respectively. Find xx, aa and nn respectively.

A

22, 33, 55

B

11, 33, 44

C

22, 33, 66

D

33, 44, 55

Answer

22, 33, 55

Explanation

Solution

We know that Tr+1=nCrxnrarT_{r+1} = \,^{n}C_{r}x^{n-r}\cdot a^{r} So, T2=nC1xn1a=240(1)T_{2} = \,^{n}C_{1}x^{n-1}\cdot a = 240\quad\ldots\left(1\right) T3=nC2xn2a2=720(2)T_{3} = \,^{n}C_{2}x^{n-2}\, a^{2} = 720\quad \ldots \left(2\right) T4=nC3xn3a3=1080(3)T_{4} = \,^{n}C_{3}x^{n-3} \,a^{3} = 1080\quad \ldots \left(3\right) Dividing (2)\left(2\right) by (1)\left(1\right), we get nC2xn2a2nC1xn1a=720240\frac{^{n}C_{2}x^{n-2}a^{2}}{^{n}C_{1}x^{n-1} a} = \frac{720}{240} i.e., (n1)ax=6\left(n-1\right)\cdot\frac{a}{x} = 6 or ax=6(n1)(4)\frac{a}{x} = \frac{6}{\left(n-1\right)}\quad\ldots\left(4\right) Dividing (3)\left(3\right) by (2)\left(2\right), we have ax=92(n2)(5)\frac{a}{x} = \frac{9}{2\left(n-2\right)}\quad \ldots \left(5\right) From (4)\left(4\right) and (5)\left(5\right), 6n1=92(n2)\frac{6}{n-1} = \frac{9}{2\left(n-2\right)}. n=5\therefore n= 5 Hence, from (1)\left(1\right), 5x4a=2405x^{4}\,a = 240, and from (4)\left(4\right), ax=32\frac{a}{x} = \frac{3}{2} Solving these equations, we get x=2x = 2 and a=3a = 3.