Solveeit Logo

Question

Mathematics Question on Second Order Derivative

The second-order derivative of which of the following functions is 5x5^x?

A

5xloge55^x \log_e 5

B

5x(loge5)25^x (\log_e 5)^2

C

5xloge5\frac{5^x}{\log_e 5}

D

5x(loge5)2\frac{5^x}{(\log_e 5)^2}

Answer

5x(loge5)2\frac{5^x}{(\log_e 5)^2}

Explanation

Solution

We need to determine which function’s second derivative equals 5x5^x. Let us check each option.

For (1) : 5xln(5)5^x \ln(5):

ddx(5xln(5))=5x(ln(5))2\frac{d}{dx} \left(5^x \ln(5)\right) = 5^x (\ln(5))^2

d2dx2(5xln(5))=5x(ln(5))35x\frac{d^2}{dx^2} \left(5^x \ln(5)\right) = 5^x (\ln(5))^3 \neq 5^x

For (2) : 5x(ln(5))25^x (\ln(5))^2:

ddx(5x(ln(5))2)=5x(ln(5))3\frac{d}{dx} \left(5^x (\ln(5))^2\right) = 5^x (\ln(5))^3

d2dx2(5x(ln(5))2)=5x(ln(5))45x\frac{d^2}{dx^2} \left(5^x (\ln(5))^2\right) = 5^x (\ln(5))^4 \neq 5^x

For (3) : 5xln(5)\frac{5^x}{\ln(5)}:

ddx(5xln(5))=5x\frac{d}{dx} \left(\frac{5^x}{\ln(5)}\right) = 5^x

d2dx2(5xln(5))=5xln(5)5x\frac{d^2}{dx^2} \left(\frac{5^x}{\ln(5)}\right) = 5^x \ln(5) \neq 5^x

For (4) : 5x(ln(5))2\frac{5^x}{(\ln(5))^2}:

ddx(5x(ln(5))2)=5xln(5)(ln(5))2\frac{d}{dx} \left(\frac{5^x}{(\ln(5))^2}\right) = \frac{5^x \ln(5)}{(\ln(5))^2}

d2dx2(5x(ln(5))2)=5x\frac{d^2}{dx^2} \left(\frac{5^x}{(\ln(5))^2}\right) = 5^x

Thus, the correct answer is:

5x(ln(5))2\frac{5^x}{(\ln(5))^2}