Solveeit Logo

Question

Question: The second order derivative of \(a{\sin ^3}t\) with respect to \(a{\cos ^3}t\) at \(t = \dfrac{\pi }...

The second order derivative of asin3ta{\sin ^3}t with respect to acos3ta{\cos ^3}t at t=π4t = \dfrac{\pi }{4} is?
A)22
B)112a\dfrac{1}{{12a}}
C)423a\dfrac{{4\sqrt 2 }}{{3a}}
D)3a42\dfrac{{3a}}{{4\sqrt 2 }}

Explanation

Solution

Here we are asked to find the second derivative of a function with respect to another function. Since both the functions are dependent on tt, we can find derivatives of them with respect to tt. Then dividing we get the first derivative in the question. Again by differentiating and substituting the value for tt, we get the required second derivative.

Useful formula:
For functions x,yx,y and some parameter tt,
dydx=dydtdxdt\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}
Also, for any x,tx,t and uu as a function of xx,we have
dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}, where nn is any number.
d(sint)dt=cost\dfrac{{d(\sin t)}}{{dt}} = \cos t
d(cost)dt=sint\dfrac{{d(\cos t)}}{{dt}} = - \sin t
d(tant)dt=sec2t\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t
du(x)dt=dudx×dxdt\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}}
Also, we have, cosπ4=12,sinπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}
sect=1cost\sec t = \dfrac{1}{{\cos t}}

Complete step-by-step answer:
To find the second order derivative of asin3ta{\sin ^3}t with respect to acos3ta{\cos ^3}t,
Let y=asin3ty = a{\sin ^3}t, x=acos3tx = a{\cos ^3}t
So, we have to find d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}.
We have dydx=dydtdxdt\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}
Consider y=asin3ty = a{\sin ^3}t
Differentiating both sides with respect to tt, we get,
dydt=a×3sin2t×d(sint)dt\dfrac{{dy}}{{dt}} = a \times 3{\sin ^2}t \times \dfrac{{d(\sin t)}}{{dt}} sect=1cost\sec t = \dfrac{1}{{\cos t}}
(Since du(x)dt=dudx×dxdt\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}} and dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}})
Also d(sint)dt=cost\dfrac{{d(\sin t)}}{{dt}} = \cos t
dydt=3asin2tcost(i)\Rightarrow \dfrac{{dy}}{{dt}} = 3a{\sin ^2}t\cos t - - - (i)
Now consider x=acos3tx = a{\cos ^3}t
Differentiating both sides with respect to tt, we get,
dxdt=a×3cos2t×d(cost)dt\dfrac{{dx}}{{dt}} = a \times 3{\cos ^2}t \times \dfrac{{d(\cos t)}}{{dt}}
(Since du(x)dt=dudx×dxdt\dfrac{{du(x)}}{{dt}} = \dfrac{{du}}{{dx}} \times \dfrac{{dx}}{{dt}} and dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}})
Also d(cost)dt=sint\dfrac{{d(\cos t)}}{{dt}} = - \sin t
dxdt=3acos2t×sint\Rightarrow \dfrac{{dx}}{{dt}} = 3a{\cos ^2}t \times - \sin t
dxdt=3acos2tsint(ii)\Rightarrow \dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t - - - (ii)
Now we have, dydx=dydtdxdt\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}
Substituting using (i)&(ii)(i)\& (ii) we get,
dydx=3asin2tcost3acos2tsint\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{3a{{\sin }^2}t\cos t}}{{ - 3a{{\cos }^2}t\sin t}}
Simplifying we get,
dydx=sintcost\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sin t}}{{\cos t}}
dydx=tan t\Rightarrow \dfrac{{dy}}{{dx}} = - {\text{tan t}}
Again differentiating both sides with respect to tt we get,
d2ydx2=sec2t×dtdx\dfrac{{{d^2}y}}{{d{x^2}}} = - {\sec ^2}t \times \dfrac{{dt}}{{dx}} (since d(tant)dt=sec2t\dfrac{{d(\tan t)}}{{dt}} = {\sec ^2}t)
d2ydx2=sec2tdxdt\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{\dfrac{{dx}}{{dt}}}}
Substituting for dxdt=3acos2tsint\dfrac{{dx}}{{dt}} = - 3a{\cos ^2}t\sin t we get,
d2ydx2=sec2t3acos2tsint\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - {{\sec }^2}t}}{{ - 3a{{\cos }^2}t\sin t}}
Since sect=1cost\sec t = \dfrac{1}{{\cos t}}, squaring both sides we have, sec2t=1cos2t{\sec ^2}t = \dfrac{1}{{{{\cos }^2}t}}
d2ydx2=13acos2tsint×cos2t\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^2}t\sin t \times {{\cos }^2}t}}
d2ydx2=13acos4tsint\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{1}{{3a{{\cos }^4}t\sin t}}
We need to find d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at t=π4t = \dfrac{\pi }{4}.
(d2ydx2)t=π4=13acos4π4sinπ4\Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\cos }^4}\dfrac{\pi }{4}\sin \dfrac{\pi }{4}}}
We have, cosπ4=12,sinπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }},\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}
Substituting we get,
(d2ydx2)t=π4=13a(12)4(12)\Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^4}\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}
(d2ydx2)t=π4=13a14×12\Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{1}{{3a\dfrac{1}{4} \times \dfrac{1}{{\sqrt 2 }}}}
Simplifying we get,
(d2ydx2)t=π4=423a\Rightarrow {\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right)_{t = \dfrac{\pi }{4}}} = \dfrac{{4\sqrt 2 }}{{3a}}
\therefore The answer is option C.

Note: We could use the above method here because both the given functions were dependent on a common variable. Otherwise taking derivatives about a function is a tedious task. The value of tt must be substituted after finding the second derivative. It is wrong if we substitute it in the first derivative itself and then differentiating the second time.