Question
Mathematics Question on Continuity and differentiability
The second derivative of a sin 3t w.r.t. a cos 3t at t =π/4 is
A
−3a4√2
B
3a4√2
C
3a4√3
D
12a
Answer
3a4√2
Explanation
Solution
Let y = asin 3t , x=acos 3t;
dxdy = 3a sin 2t cos t
dtdx = −3a cos 2t sin t
∴ dydx = −3a sin2 t cos t3a cos2 t sin t
dydx = − sin tcos t=−tan t
Differentiating with respect to x
dx2d2y = −sec 2t
dtdx= -−3a cos2 tsin tsec2 t
dtdx = 31a cos4t sin t
dtdx = (dx2d2y)tπ/4
dtdx = 3a.31a(21)4.21
dtdx = 3a(2)5
dtdx =3a4√2
Therefore the correct option is (B) 3a4√2