Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

The second derivative of a sin 3t w.r.t. a cos 3t at t =π/4 is

A

423a- \frac {4√2}{3a}

B

423a\frac {4√2}{3a}

C

433a\frac {4√3}{3a}

D

12a

Answer

423a\frac {4√2}{3a}

Explanation

Solution

Let y = asin 3t , x=acos 3t;
dydx\frac {dy}{dx} = 3a sin 2t cos t
dxdt\frac {dx}{dt} = −3a cos 2t sin t
dxdy\frac {dx}{dy} = −3a cos2 t sin t3a sin2 t cos t\frac {3a\ cos^2\ t\ sin\ t}{3a\ sin^2\ t\ cos\ t}
dxdy\frac {dx}{dy} = − cos tsin t\frac {cos\ t}{sin \ t}=−tan t
Differentiating with respect to x
d2ydx2\frac {d^2y}{dx^2} = −sec 2t
dxdt\frac {dx}{dt}= -sec2 t3a cos2 tsin t\frac {sec^2\ t}{-3a\ cos^2\ t sin \ t}
dxdt\frac {dx}{dt} = 13\frac {1}{3}a cos4t sin t
dxdt\frac {dx}{dt} = (d2ydx2)(\frac {d^2y}{dx^2})tπ/4
dxdt\frac {dx}{dt} = 3a.13\frac {1}{3}a(12)4(\frac {1}{\sqrt 2})^4.12\frac {1}{\sqrt 2}
dxdt\frac {dx}{dt} = (2)53a\frac {(\sqrt2)^5}{3a}
dxdt\frac {dx}{dt} =423a\frac {4√2}{3a}
Therefore the correct option is (B) 423a\frac {4√2}{3a}