Solveeit Logo

Question

Question: The S.D. of a variate x is σ. The S.D. of the variate\(\frac{ax + b}{c}\) where a, b, c are constant...

The S.D. of a variate x is σ. The S.D. of the variateax+bc\frac{ax + b}{c} where a, b, c are constant, is

A

(ac)σ\left( \frac{a}{c} \right)\sigma

B

acσ\left| \frac{a}{c} \right|\sigma

C

(a2c2)σ\left( \frac{a^{2}}{c^{2}} \right)\sigma

D

None

Answer

acσ\left| \frac{a}{c} \right|\sigma

Explanation

Solution

Let y=ax+bcy = \frac{ax + b}{c} i.e., y=acx+bcy = \frac{a}{c}x + \frac{b}{c} i.e. y=Ax+By = Ax + B, where

A=acA = \frac{a}{c}, B=bcB = \frac{b}{c}

yˉ=Axˉ+B\bar{y} = A\bar{x} + B

yyˉ=A(xxˉ)y - \bar{y} = A(x - \bar{x})(yyˉ)2=A2(xxˉ)2(y - \bar{y})^{2} = A^{2}(x - \bar{x})^{2}

(yyˉ)2=A2(xxˉ)2\sum(y - \bar{y})^{2} = A^{2}\sum(x - \bar{x})^{2}n.σy2=A2.nσx2n.\sigma_{y}^{2} = A^{2}.n\sigma_{x}^{2}σy2=A2σx2\sigma_{y}^{2} = A^{2}\sigma_{x}^{2}

σy=Aσx\sigma_{y} = |A|\sigma_{x}σy=acσx\sigma_{y} = \left| \frac{a}{c} \right|\sigma_{x}

Thus, new S.D.=acσ= \left| \frac{a}{c} \right|\sigma.