Question
Question: The scalars l and m such that \(l\mathbf{a} + m\mathbf{b} = \mathbf{c},\) where **a, b** and **c** a...
The scalars l and m such that la+mb=c, where a, b and c are given vectors, are equal to
A
l=(a×b)2(c×b).(a×b),m=(b×a)2(c×a).(b×a)
B
l=(a×b)(c×b).(a×b),m=(b×a)(c×a).(b×a)
C
l=(a×b)2(c×b)×(a×b),m=(b×a)(c×a)×(b×a)
D
None of these
Answer
l=(a×b)2(c×b).(a×b),m=(b×a)2(c×a).(b×a)
Explanation
Solution
Here (la+mb)×b=c×b⇒la×b=c×b
⇒l(a×b)2=(c×b).(a×b)⇒l=(a×b)2(c×b).(a×b)
Similarly, m=(b×a)2(c×a).(b×a).