Solveeit Logo

Question

Question: The scalars l and m such that \(l\mathbf{a} + m\mathbf{b} = \mathbf{c},\) where **a, b** and **c** a...

The scalars l and m such that la+mb=c,l\mathbf{a} + m\mathbf{b} = \mathbf{c}, where a, b and c are given vectors, are equal to

A

l=(c×b).(a×b)(a×b)2,m=(c×a).(b×a)(b×a)2l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^{2}},m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})^{2}}

B

l=(c×b).(a×b)(a×b),m=(c×a).(b×a)(b×a)l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})},m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}

C

l=(c×b)×(a×b)(a×b)2,m=(c×a)×(b×a)(b×a)l = \frac{(\mathbf{c} \times \mathbf{b}) \times (\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^{2}},m = \frac{(\mathbf{c} \times \mathbf{a}) \times (\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})}

D

None of these

Answer

l=(c×b).(a×b)(a×b)2,m=(c×a).(b×a)(b×a)2l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^{2}},m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})^{2}}

Explanation

Solution

Here (la+mb)×b=c×bla×b=c×b(l\mathbf{a} + m\mathbf{b}) \times \mathbf{b} = \mathbf{c} \times \mathbf{b} \Rightarrow l\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{b}

l(a×b)2=(c×b).(a×b)l=(c×b).(a×b)(a×b)2\Rightarrow l(\mathbf{a} \times \mathbf{b})^{2} = (\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b}) \Rightarrow l = \frac{(\mathbf{c} \times \mathbf{b}).(\mathbf{a} \times \mathbf{b})}{(\mathbf{a} \times \mathbf{b})^{2}}

Similarly, m=(c×a).(b×a)(b×a)2m = \frac{(\mathbf{c} \times \mathbf{a}).(\mathbf{b} \times \mathbf{a})}{(\mathbf{b} \times \mathbf{a})^{2}}.