Solveeit Logo

Question

Physics Question on work, energy and power

The scalar product of two vectors A=2i^+2j^k^\vec{A} =2\hat{i}+2\hat{j}-\hat{k} and B=j^+k^,\vec{B} = -\hat{j}+\hat{k}, is given by

A

A.B=3\vec{A}. \vec{B} = 3

B

A.B=4\vec{A} .\vec{B} = 4

C

A.B=4\vec{A} . \vec{B} = -4

D

A.B=3 \vec{A} . \vec{B} = -3

Answer

A.B=3 \vec{A} . \vec{B} = -3

Explanation

Solution

Given, A=2i^+2j^k^A=2 \hat{i}+2 \hat{j}-\hat{k} and B=j^+k^B=-\hat{j}+\hat{k}
Scalar product AB=(2i^+2j^k^)(j^+k^)A \cdot B=(2 \hat{i}+2 \hat{j}-\hat{k}) \cdot(-\hat{j}+\hat{k})
Using i^i^=1,j^j^=1,k^k^=1=1\hat{i} \cdot \hat{i}=1, \hat{j} \cdot \hat{j}=1, \hat{k} \cdot \hat{k}=1=1
we have AB=21=3A \cdot B=-2-1=-3