Solveeit Logo

Question

Mathematics Question on Vector Algebra

The scalar product of the vector i^+j^+k^\hat i+\hat j+\hat k with a unit vector along the sum of vectors 2i^+4j^5k^2\hat i+4\hat j-5 \hat k and λi^+2j^+3k^\lambda \hat i+2\hat j+3\hat k is equal to one. Find the value of λ.

Answer

(2i^+4j^5k^2\hat i+4\hat j-5\hat k)+(λi^+2j^+3k^\lambda \hat i+2\hat j+3\hat k)
=(2+λ)i^\hat i+6j^\hat j-2k^\hat k
Therefore,unit vector along (2i^+4j^5k^2\hat i+4\hat j-5\hat k)+(λi^+2j^+3k^\lambda \hat i+2\hat j+3\hat k)is given as:
Scalar product of (i^+j^+k^)with this unit vector is 1.
\Rightarrow (i^+j^+k^\hat i+\hat j+\hat k).(2+λ)i^\hat i+6j^\hat j-2k^\hat k/λ2+4λ+44\sqrt{\lambda^2+4\lambda+44}=1
(2+λ)+62λ2+4λ+44\frac{(2+\lambda)+6-2}{\lambda^2+4\lambda+44}=1
λ2+4λ+44=λ+6\sqrt{\lambda^2+4\lambda+44}=\lambda+6
λ2+4λ+44=(λ+6)2\lambda^2+4\lambda+44=(\lambda+6)^2
λ2+4λ+44=λ2+12λ+36\lambda^2+4\lambda+44=\lambda^2+12\lambda+36
8λ=88\lambda=8
⇒λ=1
Hence, the value of λ is1.