Question
Mathematics Question on Vector Algebra
The scalar product of the vector i^+j^+k^ with a unit vector along the sum of vectors 2i^+4j^−5k^ and λi^+2j^+3k^ is equal to one. Find the value of λ.
Answer
(2i^+4j^−5k^)+(λi^+2j^+3k^)
=(2+λ)i^+6j^-2k^
Therefore,unit vector along (2i^+4j^−5k^)+(λi^+2j^+3k^)is given as:
Scalar product of (i^+j^+k^)with this unit vector is 1.
⇒ (i^+j^+k^).(2+λ)i^+6j^-2k^/λ2+4λ+44=1
⇒λ2+4λ+44(2+λ)+6−2=1
⇒λ2+4λ+44=λ+6
⇒λ2+4λ+44=(λ+6)2
⇒λ2+4λ+44=λ2+12λ+36
⇒8λ=8
⇒λ=1
Hence, the value of λ is1.