Solveeit Logo

Question

Question: The $S_n$ denote the sum of the first $n$ terms of an A.P., if $S_{2n} = 3S_n$. Then $S_{3n}:S_n$ is...

The SnS_n denote the sum of the first nn terms of an A.P., if S2n=3SnS_{2n} = 3S_n. Then S3n:SnS_{3n}:S_n is equal to

A

4

B

6

C

8

D

10

Answer

6

Explanation

Solution

Let SkS_k be the sum of the first kk terms of an arithmetic progression (A.P.) with first term aa and common difference dd. The formula for SkS_k is given by: Sk=k2[2a+(k1)d]S_k = \frac{k}{2} [2a + (k-1)d]

We are given the condition S2n=3SnS_{2n} = 3S_n. Using the formula for SkS_k: S2n=2n2[2a+(2n1)d]=n[2a+(2n1)d]S_{2n} = \frac{2n}{2} [2a + (2n-1)d] = n [2a + (2n-1)d] Sn=n2[2a+(n1)d]S_n = \frac{n}{2} [2a + (n-1)d]

Substituting these into the given condition: n[2a+(2n1)d]=3(n2[2a+(n1)d])n [2a + (2n-1)d] = 3 \left( \frac{n}{2} [2a + (n-1)d] \right)

Assuming n0n \neq 0, we can divide both sides by nn: 2a+(2n1)d=32[2a+(n1)d]2a + (2n-1)d = \frac{3}{2} [2a + (n-1)d]

Multiply by 2 to clear the fraction: 2[2a+(2n1)d]=3[2a+(n1)d]2 [2a + (2n-1)d] = 3 [2a + (n-1)d] 4a+2(2n1)d=6a+3(n1)d4a + 2(2n-1)d = 6a + 3(n-1)d 4a+(4n2)d=6a+(3n3)d4a + (4n-2)d = 6a + (3n-3)d

Rearranging the terms to find a relationship between aa and dd: (4n2)d(3n3)d=6a4a(4n-2)d - (3n-3)d = 6a - 4a (4n23n+3)d=2a(4n-2 - 3n + 3)d = 2a (n+1)d=2a(n+1)d = 2a

This relation must hold for the given nn.

Now we need to find the ratio S3n:SnS_{3n} : S_n. S3n=3n2[2a+(3n1)d]S_{3n} = \frac{3n}{2} [2a + (3n-1)d]

The ratio is: S3nSn=3n2[2a+(3n1)d]n2[2a+(n1)d]\frac{S_{3n}}{S_n} = \frac{\frac{3n}{2} [2a + (3n-1)d]}{\frac{n}{2} [2a + (n-1)d]}

Cancel out n2\frac{n}{2}: S3nSn=3[2a+(3n1)d][2a+(n1)d]\frac{S_{3n}}{S_n} = \frac{3 [2a + (3n-1)d]}{[2a + (n-1)d]}

Substitute 2a=(n+1)d2a = (n+1)d into the expression: Numerator: 2a+(3n1)d=(n+1)d+(3n1)d=(n+1+3n1)d=4nd2a + (3n-1)d = (n+1)d + (3n-1)d = (n+1+3n-1)d = 4nd Denominator: 2a+(n1)d=(n+1)d+(n1)d=(n+1+n1)d=2nd2a + (n-1)d = (n+1)d + (n-1)d = (n+1+n-1)d = 2nd

So, the ratio becomes: S3nSn=3[4nd][2nd]\frac{S_{3n}}{S_n} = \frac{3 [4nd]}{[2nd]}

Assuming n0n \neq 0 and d0d \neq 0 (if d=0d=0, then a=0a=0, leading to trivial sums), we can cancel ndnd: S3nSn=3×42=122=6\frac{S_{3n}}{S_n} = \frac{3 \times 4}{2} = \frac{12}{2} = 6

Thus, S3n:Sn=6S_{3n} : S_n = 6.

Alternative Method: Let U1=SnU_1 = S_n. Let U2=S2nSnU_2 = S_{2n} - S_n. Let U3=S3nS2nU_3 = S_{3n} - S_{2n}.

The sums of consecutive blocks of nn terms in an A.P. form another A.P. We are given S2n=3SnS_{2n} = 3S_n. So, U2=3SnSn=2SnU_2 = 3S_n - S_n = 2S_n. Thus, U1=SnU_1 = S_n and U2=2SnU_2 = 2S_n. Since U1,U2,U3U_1, U_2, U_3 form an A.P., the common difference is U2U1=2SnSn=SnU_2 - U_1 = 2S_n - S_n = S_n. Therefore, U3=U2+(U2U1)=2Sn+Sn=3SnU_3 = U_2 + (U_2 - U_1) = 2S_n + S_n = 3S_n.

Now, S3n=U1+U2+U3=Sn+2Sn+3Sn=6SnS_{3n} = U_1 + U_2 + U_3 = S_n + 2S_n + 3S_n = 6S_n. The ratio S3n:Sn=6Sn:Sn=6S_{3n} : S_n = 6S_n : S_n = 6.