Solveeit Logo

Question

Question: The Rydberg formula, for the spectrum of the hydrogen atom where all terms have their usual meaning ...

The Rydberg formula, for the spectrum of the hydrogen atom where all terms have their usual meaning is

A

hυif=me48ε02h2(1nf1ni)h\upsilon_{if} = \frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}}\left( \frac{1}{n_{f}} - \frac{1}{n_{i}} \right)

B

hυif=me48ε02h2(1nf21ni2)h\upsilon_{if} = \frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}}\left( \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)

C

hυif=8ε02h2me4(1nf1ni)h\upsilon_{if} = \frac{8\varepsilon_{0}^{2}h^{2}}{me^{4}}\left( \frac{1}{n_{f}} - \frac{1}{n_{i}} \right)

D

hυif=8ε02h2me4(1nf21ni2)h\upsilon_{if} = \frac{8\varepsilon_{0}^{2}h^{2}}{me^{4}}\left( \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)

Answer

hυif=me48ε02h2(1nf21ni2)h\upsilon_{if} = \frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}}\left( \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)

Explanation

Solution

hυif=me48ε02h2(1nf21ni2)h\upsilon_{if} = \frac{me^{4}}{8\varepsilon_{0}^{2}h^{2}}\left( \frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}} \right)