Solveeit Logo

Question

Question: The rusting of iron takes place as follows: \(\ 2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \...

The rusting of iron takes place as follows:
 2H+2e+12O2H2O(l);E=+1.23V Fe2++2eFe(s);E=044V  \ 2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\\ F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V \\\ \
Calculate ΔG\Delta {G^ \odot } for the net process.
A.322 kJmol - 1 - 322{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}
B.161 kJmol - 1 - 161{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}
C.125 kJmol - 1 - 125{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}
D.76 kJmol - 1 - 76{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}

Explanation

Solution

Standard cell potential of both reactions is given. Use this formula to calculate Gibbs energy change-
ΔG=nFE\Delta {G^ \odot } = - nF{E^ \odot } where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is 96458 C/mol96458{\text{ C/mol}} and E{E^ \odot } is the standard cell potential .Then apply ΔGnet=ΔG1+ΔG2\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot to calculate the net value.

Step-by-Step Explanation-The Given reactions are-
At Cathode:
 2H+2e+12O2H2O(l);E=+1.23V   \ 2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\\ \\\ \
Then n=22 .Now using formula-
\Rightarrow ΔG=nFE\Delta {G^ \odot } = - nF{E^ \odot } Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is 96458 C/mol96458{\text{ C/mol}} and E{E^ \odot } is the standard cell potential
On putting the given values we get,
ΔG1=2×F×(1.23)\Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)
On solving we get,
ΔG1=2.46F\Rightarrow \Delta G_1^ \odot = - 2.46F --- (i)
Now at Anode:
Fe2++2eFe(s);E=044VF{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V
Then n=22.Now using formula-
\Rightarrow ΔG=nFE\Delta {G^ \odot } = - nF{E^ \odot } Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is 96458 C/mol96458{\text{ C/mol}} and E{E^ \odot } is the standard cell potential
On putting the given values we get,
ΔG2=2×F×(0.44)\Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)
On solving we get,
ΔG2=0.88F\Rightarrow \Delta G_2^ \odot = - 0.88F --- (ii)
Now on applying formula
ΔGnet=ΔG1+ΔG2\Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot
On putting the values from eq. (i) and (ii) in this formula we get,
ΔGnet=[2.46F]+[0.88F]\Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]
On simplifying we get,
ΔGnet=3.34F\Rightarrow \Delta G_{net}^ \odot = - 3.34F
And we know the value of Faraday constant, so on putting the value we get,
ΔGnet=3.34×96458\Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458 Jmol - 1{\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}
ΔGnet=322169.72\Rightarrow \Delta G_{net}^ \odot = - 322169.72 Jmol - 1{\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}
We know that 1KJ = 1000J1{\text{KJ = 1000J}}
ThenΔGnet=322169.72×1000 KJmol - 1\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}
ΔGnet=322.169 KJmol - 1\Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}

Hence correct option is A.

Note: ΔG\Delta {G^ \odot } is Gibbs energy change for a system under standard conditions while ΔG\Delta G is Gibbs free energy for a system. ΔG\Delta {G^ \odot } is also given as –
ΔG=RTlnK\Rightarrow \Delta {G^ \odot } = - RT\ln K
Where R=8.314 JmolC1R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}} is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-ΔG=ΔHTΔS\Delta G = \Delta H - T\Delta S where ΔH\Delta H is change in enthalpy, ΔS\Delta S is change in entropy and T is the temperature.