Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The roots of (xa)(xa1)+(xa1)(xa2)+(xa)(xa2)=0,aR(x-a)(x-a-1)+(x-a-1)(x-a-2) +(x-a)(x-a-2)=0, a \in R are always

A

equal

B

imaginary

C

real and distinct

D

rational and equal

Answer

real and distinct

Explanation

Solution

Given, (xa)(xa1)+(xa1)(xa2)(x-a)(x-a-1)+(x-a-1)(x-a-2)
+(xa)(xa2)=0+(x-a)(x-a-2)=0
Let xa=tx-a=t, then
t(t1)+(t1)(t2)+t(t2)=0t(t-1)+ (t-1)(t-2)+t(t-2)=0
t2t+t23t+2+t22t=0\Rightarrow t^{2}-t+ t^{2}-3 t+2+t^{2}-2 t=0
3t26t+2=0\Rightarrow 3 t^{2}-6 t+2=0
t=6±36242(3)=6±232(3)\Rightarrow t=\frac{6 \pm \sqrt{36-24}}{2(3)}=\frac{6 \pm 2 \sqrt{3}}{2(3)}
xa=3±33\Rightarrow x-a=\frac{3 \pm \sqrt{3}}{3}
x=a+3±33\Rightarrow x=a+\frac{3 \pm \sqrt{3}}{3}
Hence, xx is real and distinct.