Solveeit Logo

Question

Mathematics Question on Quadratic Equations

The roots of (xa)(xa1)+(xa1)(xa2)+(xa)(xa2)=0,aR (x- a) (x - a-1) + (x - a -1) (x - a - 2) + (x - a) (x - a - 2) = 0 , a \in R are always

A

Equal

B

Imaginary

C

real and distinct

D

rational and equal

Answer

real and distinct

Explanation

Solution

Given,
(xa)(xa1)+(xa1)(xa2)+(xa)(xa2)=0(x - a)(x - a - 1) + (x - a -1) (x - a - 2) + (x - a) (x - a - 2) = 0
Let xa=t,x - a = t, then
t(t1)+(t1)(t2)+t(t2)=0t(t -1) + (t - 1)(t - 2) + t(t - 2) = 0
t2t+t23t+2+t22t=0\Rightarrow \, \, \, t^2 - t + t^2 - 3t + 2 + t^2 - 2t = 0
3t26t+2=0\Rightarrow \, \, \, 3t^2 - 6t + 2 = 0
t=6±362423=6±23ˉ23\Rightarrow \, \, \, t = \frac{6 \pm \, \overline{36 - 24}}{2 \, 3} = \frac{6 \pm 2 \, \bar{3}}{2 \, 3}
xa=3±3ˉ3\Rightarrow \, \, \, x - a = \frac{3 \pm \, \bar{3}}{3}
x=a+3±3ˉ3\Rightarrow \, \, \, x = a + \frac{3 \pm \, \bar{3}}{3}
Hence, xx is real and distinct.