Question
Question: The roots of the equation \({x^3} - 3x - 2 = 0\) are: (A) \( - 1, - 1,2\) (B) \( - 1,1, - 2\) ...
The roots of the equation x3−3x−2=0 are:
(A) −1,−1,2
(B) −1,1,−2
(C) −1,2,−3
(D) −1,−1,−2
Solution
In the given problem, we have to factorise the given polynomial equation and find its roots. The given equation is of degree 3 and is thus called a cubic equation. For finding the factors of a cubic polynomial, we first find out the root of the polynomial by hit and trial method. Hence, we get one factor using hit and trial and then find the remaining two roots by using various methods like splitting the middle term and using quadratic formula.
Complete step-by-step solution:
So, we have, x3−3x−2=0
Now, let us consider the given polynomial x3−3x−2 as p(x).
Now, using hit and trial method,
Putting x=−1in the polynomial p(x),
p(x=−1)=(−1)3−3(−1)−2
Simplifying the calculations, we get,
\Rightarrow $$$p(x = - 1) = \left( { - 1} \right) + 3 - 2$$ \Rightarrow p\left( {x = - 1} \right) = 0Hence,p( - 1) = 0So,weconcludethatx = - 1isarootofthepolynomial.Hence,byfactortheorem,\left( {x + 1} \right)isafactorofthepolynomial.So,wetrytofactoroutthefactor\left( {x + 1} \right)fromtheequationgiven.Hence,weget,{x^3} - 3x - 2 = 0
$$ \Rightarrow {x^2}\left( {x + 1} \right) - x\left( {x + 1} \right) - 2\left( {x + 1} \right) = 0$$
Taking out the common term, we get,
$$ \Rightarrow \left( {{x^2} - x - 2} \right)\left( {x + 1} \right) = 0$$
Now,p(x) = \left( {{x^3} - 3x - 2} \right) = \left( {x + 1} \right)\left( {{x^2} - x - 2} \right)Nowquadraticpolynomials\left( {{x^2} - x - 2} \right)canbefactoredfurtherbymakinguseofsplittingthemiddletermmethod.Forfactoringthequadraticpolynomial\left( {{x^2} - x - 2} \right),wecanusethesplittingmethodinwhichthemiddletermissplitintotwotermssuchthatthesumofthetermsgivesustheoriginalmiddletermandproductofthetermsgivesustheproductoftheconstanttermandcoefficientof{x^2}.So,\left( {{x^2} - x - 2} \right) \Rightarrow {x^2} - 2x + x - 2Wesplitthemiddleterm - xintotwoterms - 2xandxsincetheproductoftheseterms, - 2{x^2}isequaltotheproductoftheconstanttermandcoefficientof{x^2}andsumofthesetermsgivesustheoriginalmiddleterm, - x. \Rightarrow x\left( {x - 2} \right) + \left( {x - 2} \right)Takingthecommonfactorout,weget, \Rightarrow \left( {x + 1} \right)\left( {x - 2} \right)Therefore,wegettheequationas, \Rightarrow \left( {x + 1} \right)\left( {x - 2} \right)\left( {x + 1} \right) = 0Now,weknowthatanyoneofthebracketshastobezeroiftheproductofallthethreefactorsisequaltozero.So,weget,\left( {x + 1} \right) = 0,\left( {x - 2} \right) = 0and\left( {x + 1} \right) = 0Now,wecansolveforthevaluesofxbyusingthemethodoftranspositionintheaboveequations.So,weget, \Rightarrow x = - 1,x = 2andx = - 1So,therootsoftheequation{x^3} - 3x - 2 = 0are - 1, - 1and2$.
Hence, option (A) is the correct answer.
Note: Such cubic equations can be solved by firstly using the hit and trial method to find one zero and then using the splitting the middle term and factorisation to solve for the remaining roots. We must have a strong grip over the concepts of algebraic expressions and simplification rules. Also, we should take care of calculations while solving for the roots of the equation.