Solveeit Logo

Question

Question: The roots of the equation \(\theta - \alpha = 0^{ο},180^{o} \Rightarrow \theta = \alpha,\ 180^{o} + ...

The roots of the equation θα=0ο,180oθ=α, 180o+α\theta - \alpha = 0^{ο},180^{o} \Rightarrow \theta = \alpha,\ 180^{o} + \alphais.

A

3sin2x7sinx+2=03\sin^{2}x - 7\sin x + 2 = 0

B

\Rightarrow

C

3sin2x6sinxsinx+2=03\sin^{2}x - 6\sin x - \sin x + 2 = 0

D

None of these

Answer

\Rightarrow

Explanation

Solution

We have, sec2θtan2θ=1\sec^{2}\theta - \tan^{2}\theta = 1

\Rightarrow

secθtanθ=13\sec\theta - \tan\theta = \frac{1}{\sqrt{3}}tanθ=12(313)=13=tan(π6)\tan\theta = \frac{1}{2}\left( \sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} = \tan\left( \frac{\pi}{6} \right)or \Rightarrow

θ=nπ+π6\theta = n\pi + \frac{\pi}{6} = 0 or \therefore0θ2π0 \leq \theta \leq 2\pi or π6\frac{\pi}{6}.

Hence, 7π6\frac{7\pi}{6} or sin5x+sin3x+sinx=0\sin 5x + \sin 3x + \sin x = 0, \Rightarrow.