Solveeit Logo

Question

Question: The roots of the equation \(\left| \begin{matrix} x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1 \e...

The roots of the equation x1111x1111x1=0\left| \begin{matrix} x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1 \end{matrix} \right| = 0are.

A

1, 2

B

– 1, 2

C

1, – 2

D

–1, – 2

Answer

– 1, 2

Explanation

Solution

We have

x1111x1111x1=0\left| \begin{matrix} x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1 \end{matrix} \right| = 0 x+111x+1x11x+11x1=0,\Rightarrow \left| \begin{matrix} x + 1 & 1 & 1 \\ x + 1 & x - 1 & 1 \\ x + 1 & 1 & x - 1 \end{matrix} \right| = 0,

{Applying C1C1+C2+C3C_{1} \rightarrow C_{1} + C_{2} + C_{3}}

(x+1)1111x1111x1=0\Rightarrow (x + 1)\left| \begin{matrix} 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1 \end{matrix} \right| = 0 (x+1)1110x2000x2=0,\Rightarrow (x + 1)\left| \begin{matrix} 1 & 1 & 1 \\ 0 & x - 2 & 0 \\ 0 & 0 & x - 2 \end{matrix} \right| = 0,

{Applying R2R2R1,R3R3R1R_{2} \rightarrow R_{2} - R_{1}, R_{3} \rightarrow R_{3} - R_{1}}

N=[433101443].\Rightarrow N = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}.