Question
Question: The roots of the equation \(\left| \begin{matrix} 1 + x & 1 & 1 \\ 1 & 1 + x & 1 \\ 1 & 1 & 1 + x \e...
The roots of the equation 1+x1111+x1111+x=0are.
A
0, – 3
B
0, 0, – 3
C
0, 0, 0, – 3
D
None of these
Answer
0, 0, – 3
Explanation
Solution
1+x1111+x1111+x=0
⇒41002190−49−452, (C1→C1+C2+C3C2→C2−C3)
1 & 0 & 1 \\ 1 & x & 1 \\ 1 & - x & 1 + x \end{matrix} \right| = 0$$ $\Rightarrow (x + 3)\left| \begin{matrix} 1 & 0 & 1 \\ 0 & x & 0 \\ 0 & - x & x \end{matrix} \right| = 0$, $\left( \begin{aligned} & R_{2} \rightarrow R_{2} - R_{1} \\ & R_{3} \rightarrow R_{3} - R_{1} \end{aligned} \right)$ $\Rightarrow (x + 3)x^{2} = 0 \Rightarrow x = 0,0, - 3$. **Trick :** Obviously the equation is of degree three, therefore it must have three solutions. So check for option (2).