Solveeit Logo

Question

Question: The roots of the equation \(\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 2x & 5x^{2} \end{...

The roots of the equation 142012512x5x2=0\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 2x & 5x^{2} \end{matrix} \right| = 0are.

A

1,2- 1, - 2

B

1,2- 1,2

C

1,21, - 2

D

1,21,2

Answer

1,2- 1,2

Explanation

Solution

142012512x5x2=0\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 2x & 5x^{2} \end{matrix} \right| = 0

\Rightarrow 0615022x5(1x2)12x5x2=0\left| \begin{matrix} 0 & 6 & 15 \\ 0 & - 2 - 2x & 5(1 - x^{2}) \\ 1 & 2x & 5x^{2} \end{matrix} \right| = 0 (R1R1R2R2R2R3)\left( \begin{aligned} & R_{1} \rightarrow R_{1} - R_{2} \\ & R_{2} \rightarrow R_{2} - R_{3} \end{aligned} \right)

0 & 1 & 1 \\ 0 & - (1 + x) & 1 - x^{2} \\ 1 & x & x^{2} \end{matrix} \right| = 0$$ $\Rightarrow$ $(1 + x)\left| \begin{matrix} 0 & 1 & 1 \\ 0 & - 1 & 1 - x \\ 1 & x & x^{2} \end{matrix} \right| = 0$ $\Rightarrow$ $x + 1 = 0$ or $x - 2 = 0$ $\Rightarrow$ $x = - 1,2$. **Trick:** Obviously by inspection, $x = - 1,2$ satisfy the equation. At $x = - 1$ $\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & - 2 & 5 \end{matrix} \right| = 0$ as $R_{2} \equiv R_{3}$ At $x = 2$, $\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 4 & 20 \end{matrix} \right| = 0$ as $R_{1} \equiv R_{3}$.