Question
Question: The roots of the equation \(\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 2x & 5x^{2} \end{...
The roots of the equation 1114−22x2055x2=0are.
A
−1,−2
B
−1,2
C
1,−2
D
1,2
Answer
−1,2
Explanation
Solution
1114−22x2055x2=0
⇒ 0016−2−2x2x155(1−x2)5x2=0 (R1→R1−R2R2→R2−R3)
0 & 1 & 1 \\ 0 & - (1 + x) & 1 - x^{2} \\ 1 & x & x^{2} \end{matrix} \right| = 0$$ $\Rightarrow$ $(1 + x)\left| \begin{matrix} 0 & 1 & 1 \\ 0 & - 1 & 1 - x \\ 1 & x & x^{2} \end{matrix} \right| = 0$ $\Rightarrow$ $x + 1 = 0$ or $x - 2 = 0$ $\Rightarrow$ $x = - 1,2$. **Trick:** Obviously by inspection, $x = - 1,2$ satisfy the equation. At $x = - 1$ $\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & - 2 & 5 \end{matrix} \right| = 0$ as $R_{2} \equiv R_{3}$ At $x = 2$, $\left| \begin{matrix} 1 & 4 & 20 \\ 1 & - 2 & 5 \\ 1 & 4 & 20 \end{matrix} \right| = 0$ as $R_{1} \equiv R_{3}$.