Solveeit Logo

Question

Mathematics Question on Determinants

The roots of the equation x111 1x11 11x1=0\begin{vmatrix}x-1&1&1\\\ 1&x-1&1\\\ 1&1&x-1\end{vmatrix} = 0 are

A

1,2

B

-1,2

C

-1,-2

D

1,-2

Answer

-1,2

Explanation

Solution

We have,
x111 1x11 11x1=0\begin{vmatrix}x-1 & 1 & 1 \\\ 1 & x-1 & 1 \\\ 1 & 1 & x-1\end{vmatrix}=0
On applying C1C1+C2+C3C_{1} \rightarrow C_{1}+C_{2}+C_{3}, we get
x+111 x+1x11 x+11x1=0\begin{vmatrix}x+1 & 1 & 1 \\\ x+1 & x-1 & 1 \\\ x+1 & 1 & x-1\end{vmatrix}=0
On taking (x+1)(x+1) common from C1C_{1}, we get
(x+1)111 1x11 11x1=0(x+1)\begin{vmatrix}1 & 1 & 1 \\\ 1 & x-1 & 1 \\\ 1 & 1 & x-1\end{vmatrix}=0
On applying, R1R1R2,R2R2R3R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}, we get
(x+1)02x0 0x22x 11x1=0\Rightarrow(x+1)\begin{vmatrix}0 & 2-x & 0 \\\ 0 & x-2 & 2-x \\\ 1 & 1 & x-1\end{vmatrix}=0
(x+1).1[(2x)20]=0\Rightarrow (x+1) .1\left[(2-x)^{2}-0\right]=0
(x+1)(2x)2=0\Rightarrow (x+1)(2-x)^{2}=0
x=1,2\Rightarrow x=-1,2