Solveeit Logo

Question

Question: The roots of the equation \(\alpha^{3} + \beta^{3}\) are given by....

The roots of the equation α3+β3\alpha^{3} + \beta^{3} are given by.

A

Δ=b24ac\Delta = b^{2} - 4ac

B

Δ0\Delta \neq 0

C

bΔ=0b\Delta = 0

D

cb0cb \neq 0

Answer

cb0cb \neq 0

Explanation

Solution

y3+y+2=0y^{3} + y + 2 = 0Taking log, we get

y3y2y2=0y^{3} - y^{2} - y - 2 = 0

y3+3y2y3=0y^{3} + 3y^{2} - y - 3 = 0

y3+4y2+5y+20=0y^{3} + 4y^{2} + 5y + 20 = 0or 2x33x2+6x+1=02x^{3} - 3x^{2} + 6x + 1 = 0

α2+β2+γ2\alpha^{2} + \beta^{2} + \gamma^{2}154\frac{15}{4}.