Question
Quantitative Aptitude Question on Quadratic Equation
The roots α, β of the equation 3x2+λx−1=0, satisfy α21+β21=15. The value of (α3+β3)2 is
A
16
B
9
C
1
D
4
Answer
4
Explanation
Solution
From the given equation, we have: α+β=−3λ αβ=−31
Now, we can use the given condition: α21+β21=15⟹α2β2α2+β2=15
Substituting αβ=−31, we get: α2+β2=−5
We know that: (α+β)3=α3+β3+3αβ(α+β)
Substituting the values of α+β and αβ, we get: (−3λ)3=α3+β3+3(−31)(−3λ)
Simplifying, we get: α3+β3=−27λ3+9λ
Now, we need to find the value of λ. We can use the identity: (α+β)2=α2+β2+2αβ
Substituting the values, we get: (−3λ)2=−5+2(−31)
Solving for λ, we get λ=±32.
Substituting the value of λ in the expression for α3+β3, we get: (α3+β3)2=4
Therefore, the value of (α3+β3)2 is 4.