Solveeit Logo

Question

Quantitative Aptitude Question on Quadratic Equation

The roots α\alpha, β\beta of the equation 3x2+λx1=03x^2 + \lambda x - 1 = 0, satisfy 1α2+1β2=15\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 15. The value of (α3+β3)2(\alpha^3 + \beta^3)^2 is

A

16

B

9

C

1

D

4

Answer

4

Explanation

Solution

From the given equation, we have: α+β=λ3\alpha + \beta = -\frac{\lambda}{3} αβ=13\alpha\beta = -\frac{1}{3}

Now, we can use the given condition: 1α2+1β2=15    α2+β2α2β2=15\frac{1}{\alpha^2} + \frac{1}{\beta^2} = 15 \implies \frac{\alpha^2 + \beta^2}{\alpha^2\beta^2} = 15

Substituting αβ=13\alpha\beta = -\frac{1}{3}, we get: α2+β2=5\alpha^2 + \beta^2 = -5

We know that: (α+β)3=α3+β3+3αβ(α+β)(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)

Substituting the values of α+β\alpha + \beta and αβ\alpha\beta, we get: (λ3)3=α3+β3+3(13)(λ3)(-\frac{\lambda}{3})^3 = \alpha^3 + \beta^3 + 3(-\frac{1}{3})(-\frac{\lambda}{3})

Simplifying, we get: α3+β3=λ327+λ9\alpha^3 + \beta^3 = -\frac{\lambda^3}{27} + \frac{\lambda}{9}

Now, we need to find the value of λ. We can use the identity: (α+β)2=α2+β2+2αβ(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta

Substituting the values, we get: (λ3)2=5+2(13)(-\frac{\lambda}{3})^2 = -5 + 2(-\frac{1}{3})

Solving for λ, we get λ=±32\lambda = \pm 3\sqrt{2}.

Substituting the value of λ in the expression for α3+β3\alpha^3 + \beta^3, we get: (α3+β3)2=4(\alpha^3 + \beta^3)^2 = 4

Therefore, the value of (α3+β3)2(\alpha^3 + \beta^3)^2 is 4.