Solveeit Logo

Question

Question: The rms velocity of hydrogen is \(\sqrt{7}\) times the rms velocity of nitrogen. If T is the tempera...

The rms velocity of hydrogen is 7\sqrt{7} times the rms velocity of nitrogen. If T is the temperature of the gas

A

T(H2)=T(N2)T(H_{2}) = T(N_{2})

B

T(H2)>T(N2)T(H_{2}) > T(N_{2})

C

T(H2)<T(N2)T(H_{2}) < T(N_{2})

D

T(H2)=7T(N2)T(H_{2}) = \sqrt{7}T(N_{2})

Answer

T(H2)<T(N2)T(H_{2}) < T(N_{2})

Explanation

Solution

u=3RTMu = \sqrt{\frac{3RT}{M}}; ∴ u(H2)u(N2)=T(H2)M(H2)×M(N2)T(N2)\frac{u(H_{2})}{u(N_{2})} = \sqrt{\frac{T(H_{2})}{M(H_{2})} \times \frac{M(N_{2})}{T(N_{2})}} or

7=T(H2)T(N2)×282\sqrt{7} = \sqrt{\frac{T(H_{2})}{T(N_{2})} \times \frac{28}{2}} or 7=T(H2)T(N2)×147 = \frac{T(H_{2})}{T(N_{2})} \times 14 or T(H2)T(N2)=12\frac{T(H_{2})}{T(N_{2})} = \frac{1}{2}

or T(N2)=2×T(H2)T(N_{2}) = 2 \times T(H_{2}) i.e., T(N2)>T(H2)T(N_{2}) > T(H_{2})