Solveeit Logo

Question

Question: The rms value of potential difference V shown in the figure is <img src="https://cdn.pureessence.te...

The rms value of potential difference V shown in the figure is

A

V03\frac{V_{0}}{\sqrt{3}}

B

V0V_{0}

C

V02\frac{V_{0}}{\sqrt{2}}

D

V02\frac{V_{0}}{2}

Answer

V02\frac{V_{0}}{\sqrt{2}}

Explanation

Solution

:

V=V0V = V_{0}for , 0tT20 \leq t \leq \frac{T}{2}

V=0V = 0for ,T2tT\frac{T}{2} \leq t \leq T

Vrms=[0TV2dt0Tdt]1/2=[0T/2 V02dt+T/2T(0)dt0Tdt]1/2\mathrm { V } _ { \mathrm { rms } } = \left[ \frac { \int _ { 0 } ^ { \mathrm { T } } \mathrm { V } ^ { 2 } \mathrm { dt } } { \int _ { 0 } ^ { \mathrm { T } } \mathrm { dt } } \right] ^ { 1 / 2 } = \left[ \frac { \int _ { 0 } ^ { \mathrm { T } / 2 } \mathrm {~V} _ { 0 } ^ { 2 } \mathrm { dt } + \int _ { \mathrm { T } / 2 } ^ { \mathrm { T } } ( 0 ) \mathrm { dt } } { \int _ { 0 } ^ { \mathrm { T } } \mathrm { dt } } \right] ^ { 1 / 2 }

=[V02 T[t]0T/2]1/2=[V02 T( T2)]1/2=[V022]1/2= \left[ \frac { \mathrm { V } _ { 0 } ^ { 2 } } { \mathrm {~T} } [ \mathrm { t } ] _ { 0 } ^ { \mathrm { T } / 2 } \right] ^ { 1 / 2 } = \left[ \frac { \mathrm { V } _ { 0 } ^ { 2 } } { \mathrm {~T} } \left( \frac { \mathrm {~T} } { 2 } \right) \right] ^ { 1 / 2 } = \left[ \frac { \mathrm { V } _ { 0 } ^ { 2 } } { 2 } \right] ^ { 1 / 2 } Vrms=V02V_{rms} = \frac{V_{0}}{\sqrt{2}}