Solveeit Logo

Question

Question: The rms value of a.c voltage with peak of 311V is A. 220V B. 311V C. 180V D. 320V...

The rms value of a.c voltage with peak of 311V is
A. 220V
B. 311V
C. 180V
D. 320V

Explanation

Solution

Hint:
One must know, how to find the RMS value of an alternating voltage, that is for alternating voltage V=V0sinωtV={{V}_{0}}\sin \omega t the RMS value is V02.\dfrac{V_{0}^{{}}}{\sqrt{2}}. The peak value of the a.c voltage can be found, by equating the term: V=V0sinωtV={{V}_{0}}\sin \omega t for maximum value of voltage, which is the peak voltage.

Step by step solution:
Let’s first start by understanding how to find out the RMS value of any function f(x). The average value of the function f(x) having time period (T) is, Average value =1T0Tf(x)dx=\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}.
Therefore, the average value of square of f(x) is, 1T0T[f(x)]2dx\dfrac{1}{T}\int\limits_{0}^{T}{{{[f(x)]}^{2}}dx}.
Hence, the RMS value of of the function f(x) will be, RMS value =1T0Tf(x)dx=\sqrt{\dfrac{1}{T}\int\limits_{0}^{T}{f(x)dx}}.
Now, let’s consider the case for the alternating voltage given by V=V0sinωtV={{V}_{0}}\sin \omega t. Since, this is a sinusoidal wave equation, hence, the time period is 2π.2\pi . Hence, using these values, that is T=2π2\pi and f(x)= V=V0sinωtV={{V}_{0}}\sin \omega t. Therefore, the RMS value becomes, 12π02π(V0sinωt)2dt\sqrt{\dfrac{1}{2\pi }\int\limits_{0}^{2\pi }{{{({{V}_{0}}\sin \omega t)}^{2}}dt}}.
That is, V022π02π(sinωt)2dt\sqrt{\dfrac{V_{0}^{2}}{2\pi }\int\limits_{0}^{2\pi }{{{(\sin \omega t)}^{2}}dt}}, here we will substitute the value ofsin2(ωt){{\sin }^{2}}(\omega t) as cos2(ωt)=12(1+cos2ωt).{{\cos }^{2}}(\omega t)=\dfrac{1}{2}(1+\cos 2\omega t).Further, we will also take out the constant values. This makes the RMS value to be, V02π02π12(1+cos2ωt)dt\dfrac{V_{0}^{{}}}{\sqrt{2\pi }}\sqrt{\int\limits_{0}^{2\pi }{\dfrac{1}{2}(1+\cos 2\omega t)dt}}. That is, V02π02π(1+cos2ωt)dt\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{\int\limits_{0}^{2\pi }{(1+\cos 2\omega t)dt}}.
We know that,ω=2πT\omega =\dfrac{2\pi }{T}. Hence the integral becomes, V02π[t]02π+[sinωtω]02π=V02π[2π0]+[sin2πsin0ω]\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[t]_{0}^{2\pi }+[\dfrac{\sin \omega t}{\omega }]_{0}^{2\pi }}=\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{[2\pi -0]+[\dfrac{\sin 2\pi -\sin 0}{\omega }]}.
Therefore, the RMS eventually becomes, V02π2π=V02.\dfrac{V_{0}^{{}}}{2\sqrt{\pi }}\sqrt{2\pi }=\dfrac{V_{0}^{{}}}{\sqrt{2}}.
In the problem, we are given that the peak value of the ac voltage is 311V. That means, the maximum value of V given by: V=V0sinωtV={{V}_{0}}\sin \omega t is 311V. Therefore; Vmax=311=V0sinωt{{V}_{\max }}=311={{V}_{0}}\sin \omega t.
However, since V0{{V}_{0}} is a constant, hence we need to find the maximum value of sinωt\sin \omega t. That is: sinωt=1\sin \omega t=1. Therefore; Vmax=311=V0sinωtV0=311{{V}_{\max }}=311={{V}_{0}}\sin \omega t\Rightarrow {{V}_{0}}=311.
Substituting in the value of V0=311{{V}_{0}}=311 into the RMS value, we get VRMS=V02=3112=220{{V}_{RMS}}=\dfrac{V_{0}^{{}}}{\sqrt{2}}=\dfrac{311}{\sqrt{2}}=220.
Therefore, the RMS value of ac voltage with peak value of 311V is 220V, given by Option A.

Note:
You may think that, we are always considering the value of alternating current as V=V0sinωtV={{V}_{0}}\sin \omega t for most of the equations. The reason is, that this value of V0sinωt{{V}_{0}}\sin \omega t is the only necessary part of the alternating voltage carrying the important information required for the calculations done above. The additional term is the phase angle.
When we consider, V1=V0sin(ωt±δ){{V}_{1}}={{V}_{0}}\sin (\omega t\pm \delta ), here (δ)(\delta ) refers to the phase angle. The phase angle is the amount or angle with which the alternating voltage (V1)({{V}_{1}}) will lead or lag against V=V0sinωtV={{V}_{0}}\sin \omega t.
(V1)({{V}_{1}}) will be leading against V=V0sinωtV={{V}_{0}}\sin \omega t, when the phase angle is positive. That is, V1=V0sin(ωt+δ){{V}_{1}}={{V}_{0}}\sin (\omega t+\delta ). Similarly, (V1)({{V}_{1}}) will be lagging behind V=V0sinωtV={{V}_{0}}\sin \omega t, when the phase angle is negative. That is, V1=V0sin(ωtδ){{V}_{1}}={{V}_{0}}\sin (\omega t-\delta ).