Solveeit Logo

Question

Mathematics Question on Limits

The right hand and left hand limit of the function are respectively

A

1 and 1

B

1 and -1

C

-1 and -1

D

-1 and 1

Answer

1 and -1

Explanation

Solution

LHL=limx0(e1/x1e1/x+1)LHL =\displaystyle\lim _{x \rightarrow 0^{-}}\left(\frac{e^{1 / x}-1}{e^{1 / x}+1}\right)
=e1e+1=010+1=1=\frac{e^{-\infty}-1}{e^{-\infty}+1}=\frac{0-1}{0+1}=-1
Dividing both numerator and denominator by e1/xe^{1 / x}, we get
limx0(1e1/x1+e1/x)\displaystyle\lim _{x \rightarrow 0}\left(\frac{1-e^{-1 / x}}{1+e^{-1 / x}}\right)
RHL=limx0+(1e1/x1+e1/x)RHL =\displaystyle\lim _{x \rightarrow 0^{+}}\left(\frac{1-e^{-1 / x}}{1+e^{-1 / x}}\right)
=1e1+e=101+0=1=\frac{1-e^{-\infty}}{1+e^{-\infty}}=\frac{1-0}{1+0}=1