Solveeit Logo

Question

Physics Question on Motion in a plane

The resultant of two vectors A\vec{A} and B\vec{B} is perpendicular to A\vec{A} and its magnitude is half that of B\vec{B}. The angle between vectors A\vec{A} and B\vec{B} is ________ .

Answer

The resultant vector R\vec{R} of A\vec{A} and B\vec{B} is perpendicular to A\vec{A}. The magnitude of R\vec{R} is given as:
R=B2.|\vec{R}| = \frac{|\vec{B}|}{2}.

Using the vector projection formula, the component of B\vec{B} along A\vec{A} is:
Bcosθ=B2.B \cos \theta = \frac{B}{2}.
Simplify: cosθ=12.\cos \theta = \frac{1}{2}.

From this, θ=60\theta = 60^\circ. Since R\vec{R} is perpendicular to A\vec{A}, the angle between A\vec{A} and B\vec{B} is:
Angle between A and B=90+60=150.\text{Angle between } \vec{A} \text{ and } \vec{B} = 90^\circ + 60^\circ = 150^\circ.

Explanation

Solution

The resultant vector R\vec{R} of A\vec{A} and B\vec{B} is perpendicular to A\vec{A}. The magnitude of R\vec{R} is given as:
R=B2.|\vec{R}| = \frac{|\vec{B}|}{2}.

Using the vector projection formula, the component of B\vec{B} along A\vec{A} is:
Bcosθ=B2.B \cos \theta = \frac{B}{2}.
Simplify: cosθ=12.\cos \theta = \frac{1}{2}.

From this, θ=60\theta = 60^\circ. Since R\vec{R} is perpendicular to A\vec{A}, the angle between A\vec{A} and B\vec{B} is:
Angle between A and B=90+60=150.\text{Angle between } \vec{A} \text{ and } \vec{B} = 90^\circ + 60^\circ = 150^\circ.