Solveeit Logo

Question

Question: The resultant of two vectors at angle 150\({}^{\circ }\) is 10 units and is perpendicular to one vec...

The resultant of two vectors at angle 150{}^{\circ } is 10 units and is perpendicular to one vector. The magnitude of the smaller vector is
A. 10units\text{A}\text{. 10units}
B. 103units\text{B}\text{. 10}\sqrt{3}\text{units}
C. 102units\text{C}\text{. 10}\sqrt{2}\text{units}
D. 53units\text{D}\text{. 5}\sqrt{3}\text{units}

Explanation

Solution

Hint: Use the law of Parallelogram for vectors, which gives the resultant of two vectors. The magnitude of the resultant R is given as R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }, where A and B is the magnitudes of the vectors A\overrightarrow{A} and B\overrightarrow{B}respectively. θ\theta is the angle between A and B.

Formula used:
R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }

Complete step by step answer:
The resultant vector R\overrightarrow{R} of two vectors A\overrightarrow{A} and B\overrightarrow{B} is given as R=A+B\overrightarrow{R}=\overrightarrow{A}+\overrightarrow{B}. The magnitude (R) of the resultant is given as R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }, where A and B is the magnitudes of the vectors A\overrightarrow{A} and B\overrightarrow{B}respectively. θ\theta is the angle between A and B.
Let us first draw a figure.

Here, (A)\left( -\overrightarrow{A} \right) is a vector, magnitude is equal to vector A but it is opposite in direction of A.
When we use the resultant formula for R\overrightarrow{R}, A\overrightarrow{A} and B\overrightarrow{B}, we get R=A2+B2+2ABcosθR=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos \theta }
Here, θ=150\theta ={{150}^{\circ }}.
R=A2+B2+2ABcos(150)\Rightarrow R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\cos (150)}
cos(150)=32\cos (150)=-\dfrac{\sqrt{3}}{2}.
R=A2+B2+2AB(32)\Rightarrow R=\sqrt{{{A}^{2}}+{{B}^{2}}+2AB\left( -\dfrac{\sqrt{3}}{2} \right)}
R=A2+B23AB\Rightarrow R=\sqrt{{{A}^{2}}+{{B}^{2}}-\sqrt{3}AB}
Square both sides.
R2=A2+B23AB\Rightarrow {{R}^{2}}={{A}^{2}}+{{B}^{2}}-\sqrt{3}AB ……..(i).
As per the figure x(A)+R=B\left( -\overrightarrow{A} \right)+\overline{R}=\overline{B}. Therefore, the magnitude of R is B=A2+R2+2ARcos90B=\sqrt{{{A}^{2}}+{{R}^{2}}+2AR\cos 90}
We know that cos90=0.
B=A2+R2+0\Rightarrow B=\sqrt{{{A}^{2}}+{{R}^{2}}+0}
B=A2+R2\Rightarrow B=\sqrt{{{A}^{2}}+{{R}^{2}}} ……(ii).
Square both sides.
B2=A2+R2\Rightarrow {{B}^{2}}={{A}^{2}}+{{R}^{2}} ……(iii).
Substitute the values of B and B2{{B}^{2}} in equation (i).
Therefore,
R2=A2+(A2+R2)3A(A2+R2)\Rightarrow {{R}^{2}}={{A}^{2}}+({{A}^{2}}+{{R}^{2}})-\sqrt{3}A\left( \sqrt{{{A}^{2}}+{{R}^{2}}} \right)
Open the brackets.
R2R2=2A23A(A2+R2)\Rightarrow {{R}^{2}}-{{R}^{2}}=2{{A}^{2}}-\sqrt{3}A\left( \sqrt{{{A}^{2}}+{{R}^{2}}} \right)
0=2A23A(A2+R2)\Rightarrow 0=2{{A}^{2}}-\sqrt{3}A\left( \sqrt{{{A}^{2}}+{{R}^{2}}} \right)
Therefore,
2A2=3A(A2+R2)2{{A}^{2}}=\sqrt{3}A\left( \sqrt{{{A}^{2}}+{{R}^{2}}} \right)
Divide both sides by A. Therefore,
2A=3(A2+R2)2A=\sqrt{3}\left( \sqrt{{{A}^{2}}+{{R}^{2}}} \right)
Square both the sides.
4A2=3(A2+R2)4{{A}^{2}}=3\left( {{A}^{2}}+{{R}^{2}} \right)
Open the brackets.
4A2=3A2+3R24{{A}^{2}}=3{{A}^{2}}+3{{R}^{2}}
This implies, A2=3R2{{A}^{2}}=3{{R}^{2}}.
Therefore, A=3RA=\sqrt{3}R.
The given value of R is 10 units. Therefore, A=3(10)=103unitsA=\sqrt{3}\left( 10 \right)=10\sqrt{3}units.
Substitute the value of A in equation (iii).
B2=(3R)2+R2\Rightarrow {{B}^{2}}={{\left( \sqrt{3}R \right)}^{2}}+{{R}^{2}}
B2=3R2+R2\Rightarrow {{B}^{2}}=3{{R}^{2}}+{{R}^{2}}
B2=4R2\Rightarrow {{B}^{2}}=4{{R}^{2}}
This implies that B=2R=2×10=20unitsB=2R=2\times 10=20units.
Therefore, the magnitudes of A and B are 10310\sqrt{3}units and 20 units respectively.
Hence, the smaller vector is A\overrightarrow{A} with a magnitude of 10310\sqrt{3} units.
Therefore, the correct option is B.

Note: This problem can also be solved by resolving the vectors into their components.
Resolve vector B\overline{B} into horizontal components along vector R\overline{R} and a vertical component along vector A-\overline{A}. The horizontal component is equal to Bcos(60)B\cos (60) and the vertical component is equal to Bsin(60)B\sin (60).
Since the B\overline{B} is the resultant of A-\overline{A} and R\overline{R}, Bcos(60)=RB\cos (60)=R and Bsin(60)=AB\sin (60)=A.
Therefore, B=Rcos60B=\dfrac{R}{\cos 60}.
cos(60)=12\cos (60)=\dfrac{1}{2} and R=10units.
B=R(12)=2R=2×10=20units\Rightarrow B=\dfrac{R}{\left( \dfrac{1}{2} \right)}=2R=2\times 10=20units
We also have Bsin(60)=AB\sin (60)=A. Substitute the value of B.
Therefore, A=(20).(32)=103unitsA=(20).\left( \dfrac{\sqrt{3}}{2} \right)=10\sqrt{3}units
Therefore, the smaller vector is A\overline{A} and its magnitude is 103units10\sqrt{3}units.