Solveeit Logo

Question

Question: The resultant of two rectangular simple harmonic motions of the same frequency and unequal amplitude...

The resultant of two rectangular simple harmonic motions of the same frequency and unequal amplitudes but differing in phase by π2\frac{\pi}{2} is

A

Simple harmonic

B

Circular

C

Elliptical

D

Parabolic

Answer

Elliptical

Explanation

Solution

If first equation is y1=a1sinωty_{1} = a_{1}\sin\omega tsinωt=y1a1\sin\omega t = \frac{y_{1}}{a_{1}} ... (i)

then second equation will be y2=a2sin(ωt+π2)y_{2} = a_{2}\sin\left( \omega t + \frac{\pi}{2} \right)

=a2[sinωtcosπ2+cosωtsinπ2]=a2cosωt= a_{2}\left\lbrack \sin\omega t\cos\frac{\pi}{2} + \cos\omega t\sin\frac{\pi}{2} \right\rbrack = a_{2}\cos\omega t

cosωt=y2a2\cos\omega t = \frac{y_{2}}{a_{2}} ... (ii)

By squaring and adding equation (i) and (ii)

sin2ωt+cos2ωt=y12a12+y22a22\sin^{2}\omega t + \cos^{2}\omega t = \frac{y_{1}^{2}}{a_{1}^{2}} + \frac{y_{2}^{2}}{a_{2}^{2}}

y12a12+y22a22=1\frac{y_{1}^{2}}{a_{1}^{2}} + \frac{y_{2}^{2}}{a_{2}^{2}} = 1; This is the equation of ellipse.