Solveeit Logo

Question

Physics Question on thermal properties of matter

The resistances of the platinum wire of a platinum resistance thermometer at the ice point and steam point are 8Ω8 \, \Omega and 10Ω10 \, \Omega respectively. After inserting in a hot bath of temperature 400C400^\circ \text{C}, the resistance of the platinum wire is:

A

2Ω2 \, \Omega

B

16Ω16 \, \Omega

C

8Ω8 \, \Omega

D

10Ω10 \, \Omega

Answer

16Ω16 \, \Omega

Explanation

Solution

Use the Temperature-Resistance Relationship for a Platinum Resistance Thermometer:
The resistance RR of a platinum resistance thermometer at a temperature TT (in °C) is given by:
RT=R0(1+αΔT)R_T = R_0(1 + \alpha \Delta T) where:
R0R_0 is the resistance at 0°C (ice point),
α\alpha is the temperature coefficient of resistance of platinum,
ΔT\Delta T is the temperature difference from the ice point.

Given Data:
R0=8ΩR_0 = 8 \, \Omega (resistance at 0°C)
R100=10ΩR_{100} = 10 \, \Omega (resistance at 100°C)
Temperature of the hot bath: T=400°CT = 400°C

Calculate the Temperature Coefficient α\alpha:
Using the resistance values at 0°C and 100°C:
R100=R0(1+100α)R_{100} = R_0(1 + 100\alpha)
Substitute R100=10ΩR_{100} = 10 \, \Omega and R0=8ΩR_0 = 8 \, \Omega:
10=8(1+100α)10 = 8(1 + 100\alpha) 1+100α=108=1.251 + 100\alpha = \frac{10}{8} = 1.25
100α=0.25100\alpha = 0.25 α=0.25100=0.0025°C1\alpha = \frac{0.25}{100} = 0.0025 \, °C^{-1}

Calculate the Resistance at 400°C:
Now, using T=400°CT = 400°C:
R400=R0(1+α×400)R_{400} = R_0(1 + \alpha \times 400)
Substitute R0=8ΩR_0 = 8 \, \Omega and α=0.0025\alpha = 0.0025:
R400=8×(1+0.0025×400)R_{400} = 8 \times (1 + 0.0025 \times 400)
R400=8×(1+1)=8×2=16ΩR_{400} = 8 \times (1 + 1) = 8 \times 2 = 16 \, \Omega

Conclusion:
The resistance of the platinum wire at 400°C is 16Ω16 \, \Omega.