Solveeit Logo

Question

Question: The resistance of wire in a heater at room temperature is \(6.5 \times 10^{- 6}m^{2}V^{- 1}s^{- 1}\)...

The resistance of wire in a heater at room temperature is 6.5×106m2V1s16.5 \times 10^{- 6}m^{2}V^{- 1}s^{- 1}. When the heater is connected to a 220 V supply the current settles after a few seconds to 2.8 A. What is the steady temperature of the wire. (Temperature coefficient of resistance2.5×106m2V1S12.5 \times 10^{6}m^{2}V^{- 1}S^{- 1}

A

955 vdEv_{d} \propto E

B

1055vdE2v_{d} \propto E^{2}

C

1155 vdEv_{d} \propto \sqrt{E}

D

1258 vd1Ev_{d} \propto \frac{1}{E}

Answer

1258 vd1Ev_{d} \propto \frac{1}{E}

Explanation

Solution

: Here, T1=27oC,R1=65ΩT_{1} = 27^{o}C,R_{1} = 65\Omega

R2SupplyvoltageSteadycurrent=2202.8=78.6ΩR_{2}\frac{Supplyvoltage}{Steadycurrent} = \frac{220}{2.8} = 78.6\Omega

Now, using the relation

R2=R1[1+α(T2T1)]R_{2} = R_{1}\lbrack 1 + \alpha(T_{2} - T_{1})\rbrack

T2T1=R2R1R1×1α=78.66565×11.7×104\therefore \mathrm { T } _ { 2 } - \mathrm { T } _ { 1 } = \frac { \mathrm { R } _ { 2 } - \mathrm { R } _ { 1 } } { \mathrm { R } _ { 1 } } \times \frac { 1 } { \alpha } = \frac { 78.6 - 65 } { 65 } \times \frac { 1 } { 1.7 \times 10 ^ { - 4 } } T2T1=1231T_{2} - T_{1} = 1231

T2=1231+T1=1231+27=1258oCT_{2} = 1231 + T_{1} = 1231 + 27 = 1258^{o}C