Solveeit Logo

Question

Question: The resistance of the wire in the platinum resistance thermometer at ice point is \(T_{1}\) and at s...

The resistance of the wire in the platinum resistance thermometer at ice point is T1T_{1} and at steam point is T2T_{2} . When the thermometer is inserted in an unknown hot bath its resistance is found to be T1T_{1}. The temperature of the hot bath is

A

100 T1=T2T_{1} = T_{2}C

B

200 T1=1T2T_{1} = \frac{1}{T_{2}}C

C

300 7.5×104ms17.5 \times 10^{- 4}ms^{- 1}C

D

350 3×1010Vm13 \times 10^{- 10}Vm^{- 1}C

Answer

200 T1=1T2T_{1} = \frac{1}{T_{2}}C

Explanation

Solution

: Here,

R0=5Ω,R100=5.25Ω,Rt=5.5ΩR_{0} = 5\Omega,R_{100} = 5.25\Omega,R_{t} = 5.5\Omega

As,

Rt=R0(1+αt)R100=R0(1+α100)R_{t} = R_{0}(1 + \alpha t)\therefore R_{100} = R_{0}(1 + \alpha 100)

α=R100R0R0×100\alpha = \frac{R_{100} - R_{0}}{R_{0} \times 100} …(i)

Let the temperature of hot bath be toCt^{o}C

Rt=R0(1+αt)R_{t} = R_{0}(1 + \alpha t)

α=RtR0R0×t\alpha = \frac{R_{t} - R_{0}}{R_{0} \times t}

Equating equations (i) and (ii), we get

R100R0R0×100=RtR0R0×t\frac{R_{100} - R_{0}}{R_{0} \times 100} = \frac{R_{t} - R_{0}}{R_{0} \times t}

t=RtR0R100R0×100=5.555.255×100t = \frac{R_{t} - R_{0}}{R_{100} - R_{0}} \times 100 = \frac{5.5 - 5}{5.25 - 5} \times 100

=0.50.25×100=200oC= \frac{0.5}{0.25} \times 100 = 200^{o}C