Solveeit Logo

Question

Question: The resistance of $\frac{1}{10}$ M solution is $2.5 \times 10^3 \text{ohm}$. What is the molar condu...

The resistance of 110\frac{1}{10} M solution is 2.5×103ohm2.5 \times 10^3 \text{ohm}. What is the molar conductivity of solution? (cell constant = 1.25cm11.25 \text{cm}^{-1})

Answer

5

Explanation

Solution

The conductivity (κ\kappa) of the solution is related to the cell constant (GG^*) and resistance (RR) by the formula:

κ=GR\kappa = \frac{G^*}{R}

Given G=1.25 cm1G^* = 1.25 \text{ cm}^{-1} and R=2.5×103 ohmR = 2.5 \times 10^3 \text{ ohm}.

κ=1.25 cm12.5×103 ohm=1.252500 S cm1=0.0005 S cm1=5×104 S cm1\kappa = \frac{1.25 \text{ cm}^{-1}}{2.5 \times 10^3 \text{ ohm}} = \frac{1.25}{2500} \text{ S cm}^{-1} = 0.0005 \text{ S cm}^{-1} = 5 \times 10^{-4} \text{ S cm}^{-1}

The molar conductivity (Λm\Lambda_m) is related to the conductivity (κ\kappa) and molar concentration (CC) by the formula:

Λm=κC×1000\Lambda_m = \frac{\kappa}{C} \times 1000

where κ\kappa is in S cm1^{-1}, CC is in mol L1^{-1} (M), and Λm\Lambda_m is in S cm2^2 mol1^{-1}.

Given C=110 M=0.1 mol L1C = \frac{1}{10} \text{ M} = 0.1 \text{ mol L}^{-1}.

Λm=5×104 S cm10.1 mol L1×1000 cm3 L1\Lambda_m = \frac{5 \times 10^{-4} \text{ S cm}^{-1}}{0.1 \text{ mol L}^{-1}} \times 1000 \text{ cm}^3 \text{ L}^{-1}

Λm=5×1040.1×1000 S cm2 mol1\Lambda_m = \frac{5 \times 10^{-4}}{0.1} \times 1000 \text{ S cm}^2 \text{ mol}^{-1}

Λm=(5×103)×1000 S cm2 mol1\Lambda_m = (5 \times 10^{-3}) \times 1000 \text{ S cm}^2 \text{ mol}^{-1}

Λm=5 S cm2 mol1\Lambda_m = 5 \text{ S cm}^2 \text{ mol}^{-1}

The molar conductivity of the solution is 5 S cm2 mol15 \text{ S cm}^2 \text{ mol}^{-1}.