Solveeit Logo

Question

Question: The resistance of a conductivity cell filled with 0.01N KC/ at 25°C was found to be 5002. The specif...

The resistance of a conductivity cell filled with 0.01N KC/ at 25°C was found to be 5002. The specific conductance of 0.01 N KC/ at 25°C is 1.41×10³,¯¹cm¯¹. The resistance of same cell filled with 0.3 NZnSO, at 25°C was found to be 692. The equivalent conductivity of ZnSO, solution is

Answer

34.06 Ω1cm2eq1\Omega^{-1}cm^2 \text{eq}^{-1}

Explanation

Solution

  1. Calculate the cell constant (GG^*) using the given resistance (RKClR_{KCl}) and specific conductance (κKCl\kappa_{KCl}) of the KClKCl solution: G=κKCl×RKClG^* = \kappa_{KCl} \times R_{KCl}.
  2. Calculate the specific conductance (κZnSO4\kappa_{ZnSO_4}) of the ZnSO4ZnSO_4 solution using the cell constant and its resistance (RZnSO4R_{ZnSO_4}): κZnSO4=G/RZnSO4\kappa_{ZnSO_4} = G^* / R_{ZnSO_4}.
  3. Calculate the equivalent conductivity (Λe\Lambda_e) of the ZnSO4ZnSO_4 solution using its specific conductance and normality (NZnSO4N_{ZnSO_4}): Λe=κZnSO4×(1000/NZnSO4)\Lambda_e = \kappa_{ZnSO_4} \times (1000/N_{ZnSO_4}).

Given: RKCl=500ΩR_{KCl} = 500 \Omega κKCl=1.41×103Ω1cm1\kappa_{KCl} = 1.41 \times 10^{-3} \Omega^{-1}cm^{-1} RZnSO4=69ΩR_{ZnSO_4} = 69 \Omega NZnSO4=0.3NN_{ZnSO_4} = 0.3 N

Step 1: G=(1.41×103Ω1cm1)×(500Ω)=0.705cm1G^* = (1.41 \times 10^{-3} \Omega^{-1}cm^{-1}) \times (500 \Omega) = 0.705 cm^{-1} Step 2: κZnSO4=0.705cm1/69Ω0.010217Ω1cm1\kappa_{ZnSO_4} = 0.705 cm^{-1} / 69 \Omega \approx 0.010217 \Omega^{-1}cm^{-1} Step 3: Λe=(0.010217Ω1cm1)×(1000/0.3)34.06Ω1cm2eq1\Lambda_e = (0.010217 \Omega^{-1}cm^{-1}) \times (1000/0.3) \approx 34.06 \Omega^{-1}cm^2 \text{eq}^{-1}