Solveeit Logo

Question

Question: The resistance of 0.2 M solution of an electrolyte is 50 Ω. The specific conductance of the solution...

The resistance of 0.2 M solution of an electrolyte is 50 Ω. The specific conductance of the solution is 1.3 S m⁻¹. If resistance of 0.4 M solution of the same electrolyte is 260 Ω, its molar conductivity is:

[HINT: κ\kappa = (1/R) G*, \Lambda$$_{m} = (κ\kappa × 1000) / M, take care of units]

A

6.25 × 10⁻⁴ S m² mol⁻¹

B

6.25 × 10⁻² S m² mol⁻¹

C

62.5 S m² mol⁻¹

D

625 × 10⁻⁴ S m² mol⁻¹

Answer

6.25 × 10⁻⁴ S m² mol⁻¹

Explanation

Solution

Here's how to solve this problem:

  1. *Calculate the cell constant (G)**:

    Using the data for the 0.2 M solution:

    κ1=(1/R1)G\kappa_1 = (1/R_1) G^*

    1.3Sm1=(1/50Ω)G1.3 \, S \, m^{-1} = (1/50 \, \Omega) G^*

    G=1.3Sm1×50Ω=65m1G^* = 1.3 \, S \, m^{-1} \times 50 \, \Omega = 65 \, m^{-1}

  2. Calculate the specific conductance (κ2\kappa_2) of the 0.4 M solution:

    κ2=(1/R2)G\kappa_2 = (1/R_2) G^*

    κ2=(1/260Ω)×65m1\kappa_2 = (1/260 \, \Omega) \times 65 \, m^{-1}

    κ2=0.25Sm1\kappa_2 = 0.25 \, S \, m^{-1}

  3. Calculate the molar conductivity (Λm2\Lambda_{m2}) of the 0.4 M solution:

    Λm=κ/C\Lambda_{m} = \kappa / C, where C is the molar concentration in molm3mol \, m^{-3}.

    Convert molarity from molL1mol \, L^{-1} to molm3mol \, m^{-3}:

    C2=0.4molL1×1000Lm3=400molm3C_2 = 0.4 \, mol \, L^{-1} \times 1000 \, L \, m^{-3} = 400 \, mol \, m^{-3}

    Λm2=κ2/C2\Lambda_{m2} = \kappa_2 / C_2

    Λm2=0.25Sm1/400molm3\Lambda_{m2} = 0.25 \, S \, m^{-1} / 400 \, mol \, m^{-3}

    Λm2=6.25×104Sm2mol1\Lambda_{m2} = 6.25 \times 10^{-4} \, S \, m^2 \, mol^{-1}

Therefore, the molar conductivity of the 0.4 M solution is 6.25×104Sm2mol16.25 \times 10^{-4} \, S \, m^2 \, mol^{-1}.