Solveeit Logo

Question

Question: The remainder when ($4^{87}$ + $6^{87}$) is divided by 25, is...

The remainder when (4874^{87} + 6876^{87}) is divided by 25, is

A

Zero

B

10

C

20

D

24

Answer

20

Explanation

Solution

To find the remainder of (4874^{87} + 6876^{87}) when divided by 25, we use modular arithmetic.

We calculate 487(mod25)4^{87} \pmod{25}: 45=10241(mod25)4^5 = 1024 \equiv -1 \pmod{25}. Since 87=17×5+287 = 17 \times 5 + 2, 487=(45)1742(1)1716169(mod25)4^{87} = (4^5)^{17} \cdot 4^2 \equiv (-1)^{17} \cdot 16 \equiv -16 \equiv 9 \pmod{25}.

We calculate 687(mod25)6^{87} \pmod{25}: 65=77761(mod25)6^5 = 7776 \equiv 1 \pmod{25}. Since 87=17×5+287 = 17 \times 5 + 2, 687=(65)1762117363611(mod25)6^{87} = (6^5)^{17} \cdot 6^2 \equiv 1^{17} \cdot 36 \equiv 36 \equiv 11 \pmod{25}.

Adding the remainders: 487+6879+1120(mod25)4^{87} + 6^{87} \equiv 9 + 11 \equiv 20 \pmod{25}.