Solveeit Logo

Question

Question: The remainder when $2017^{2018} + 2018^{2019} + 2019^{2020}$ is divided by 5 is...

The remainder when 20172018+20182019+201920202017^{2018} + 2018^{2019} + 2019^{2020} is divided by 5 is

Answer

2

Explanation

Solution

To find the remainder when 20172018+20182019+201920202017^{2018} + 2018^{2019} + 2019^{2020} is divided by 5, we can use modular arithmetic. We need to find the remainder of each term when divided by 5 and then sum these remainders.

Step 1: Simplify the base of each term modulo 5.

  • For the first term, 2017(mod5)2017 \pmod{5}: The last digit of 2017 is 7. 7÷57 \div 5 gives a remainder of 2. So, 20172(mod5)2017 \equiv 2 \pmod{5}.
  • For the second term, 2018(mod5)2018 \pmod{5}: The last digit of 2018 is 8. 8÷58 \div 5 gives a remainder of 3. So, 20183(mod5)2018 \equiv 3 \pmod{5}.
  • For the third term, 2019(mod5)2019 \pmod{5}: The last digit of 2019 is 9. 9÷59 \div 5 gives a remainder of 4. So, 20194(mod5)2019 \equiv 4 \pmod{5}.

Now, the expression becomes finding the remainder of 22018+32019+420202^{2018} + 3^{2019} + 4^{2020} when divided by 5.

Step 2: Calculate the remainder for each power term.

  • For 22018(mod5)2^{2018} \pmod{5}: Let's look at the cycle of powers of 2 modulo 5: 212(mod5)2^1 \equiv 2 \pmod{5}

    224(mod5)2^2 \equiv 4 \pmod{5}

    2383(mod5)2^3 \equiv 8 \equiv 3 \pmod{5}

    24161(mod5)2^4 \equiv 16 \equiv 1 \pmod{5}

    The cycle length is 4. We need to find the remainder of the exponent 20182018 when divided by 4: 2018÷4=5042018 \div 4 = 504 with a remainder of 2. So, 22018224(mod5)2^{2018} \equiv 2^2 \equiv 4 \pmod{5}.

  • For 32019(mod5)3^{2019} \pmod{5}: Let's look at the cycle of powers of 3 modulo 5: 313(mod5)3^1 \equiv 3 \pmod{5}

    3294(mod5)3^2 \equiv 9 \equiv 4 \pmod{5}

    33272(mod5)3^3 \equiv 27 \equiv 2 \pmod{5}

    34811(mod5)3^4 \equiv 81 \equiv 1 \pmod{5}

    The cycle length is 4. We need to find the remainder of the exponent 20192019 when divided by 4: 2019÷4=5042019 \div 4 = 504 with a remainder of 3. So, 32019332(mod5)3^{2019} \equiv 3^3 \equiv 2 \pmod{5}.

  • For 42020(mod5)4^{2020} \pmod{5}: We can notice that 41(mod5)4 \equiv -1 \pmod{5}. So, 42020(1)2020(mod5)4^{2020} \equiv (-1)^{2020} \pmod{5}. Since 2020 is an even number, (1)2020=1(-1)^{2020} = 1. Therefore, 420201(mod5)4^{2020} \equiv 1 \pmod{5}.

Step 3: Sum the individual remainders.

Now, we add the remainders found in Step 2: 20172018+20182019+201920204+2+1(mod5)2017^{2018} + 2018^{2019} + 2019^{2020} \equiv 4 + 2 + 1 \pmod{5}

4+2+1=74 + 2 + 1 = 7

Step 4: Find the remainder of the sum modulo 5.

7(mod5)7 \pmod{5}

7÷5=17 \div 5 = 1 with a remainder of 2.

So, 72(mod5)7 \equiv 2 \pmod{5}.

The remainder when 20172018+20182019+201920202017^{2018} + 2018^{2019} + 2019^{2020} is divided by 5 is 2.