Solveeit Logo

Question

Question: The relationship between the correlation coefficient r and the regression coefficients \(b_{xy}\) an...

The relationship between the correlation coefficient r and the regression coefficients bxyb_{xy} and byxb_{yx} is

A

r=12(bxy+byx)r = \frac{1}{2}(b_{xy} + b_{yx})

B

r=bxy.byxr = \sqrt{b_{xy}.b_{yx}}

C

r=(bxybyx)2r = (b_{xy}b_{yx})^{2}

D

r=bxy+byxr = b_{xy} + b_{yx}

Answer

r=bxy.byxr = \sqrt{b_{xy}.b_{yx}}

Explanation

Solution

Regression coefficients of y on x =r=(34)(14)=34r = \sqrt{\left( \frac{- 3}{4} \right)\left( \frac{- 1}{4} \right)} = \frac{- \sqrt{3}}{4}

Regression coefficients of x on y =bxy=r.σxσyb_{xy} = r.\frac{\sigma_{x}}{\sigma_{y}}

Then, byx.bxy=r.σyσx×r.σxσyb_{yx}.b_{xy} = r.\frac{\sigma_{y}}{\sigma_{x}} \times r.\frac{\sigma_{x}}{\sigma_{y}}

r2=byx.bxyr^{2} = b_{yx}.b_{xy}r=byx.bxyr = \sqrt{b_{yx}.b_{xy}}.